1,018 research outputs found

    Fast OPED algorithm for reconstruction of images from Radon data

    Full text link
    A fast implementation of the OPED algorithm, a reconstruction algorithm for Radon data introduced recently, is proposed and tested. The new implementation uses FFT for discrete sine transform and an interpolation step. The convergence of the fast implementation is proved under the condition that the function is mildly smooth. The numerical test shows that the accuracy of the OPED algorithm changes little when the fast implementation is used.Comment: 13 page

    OPED reconstruction algorithm for limited angle problem

    Full text link
    The structure of the reconstruction algorithm OPED permits a natural way to generate additional data, while still preserving the essential feature of the algorithm. This provides a method for image reconstruction for limited angel problems. In stead of completing the set of data, the set of discrete sine transforms of the data is completed. This is achieved by solving systems of linear equations that have, upon choosing appropriate parameters, positive definite coefficient matrices. Numerical examples are presented.Comment: 17 page

    Approximation and Reconstruction from Attenuated Radon Projections

    Full text link
    Attenuated Radon projections with respect to the weight function Wμ(x,y)=(1−x2−y2)μ−1/2W_\mu(x,y) = (1-x^2-y^2)^{\mu-1/2} are shown to be closely related to the orthogonal expansion in two variables with respect to WμW_\mu. This leads to an algorithm for reconstructing two dimensional functions (images) from attenuated Radon projections. Similar results are established for reconstructing functions on the sphere from projections described by integrals over circles on the sphere, and for reconstructing functions on the three-dimensional ball and cylinder domains.Comment: 25 pages, 3 figure

    Reconstruction from Radon projections and orthogonal expansion on a ball

    Full text link
    The relation between Radon transform and orthogonal expansions of a function on the unit ball in \RR^d is exploited. A compact formula for the partial sums of the expansion is given in terms of the Radon transform, which leads to algorithms for image reconstruction from Radon data. The relation between orthogonal expansion and the singular value decomposition of the Radon transform is also exploited.Comment: 15 page

    Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm

    Full text link
    Practical applications of thermoacoustic tomography require numerical inversion of the spherical mean Radon transform with the centers of integration spheres occupying an open surface. Solution of this problem is needed (both in 2-D and 3-D) because frequently the region of interest cannot be completely surrounded by the detectors, as it happens, for example, in breast imaging. We present an efficient numerical algorithm for solving this problem in 2-D (similar methods are applicable in the 3-D case). Our method is based on the numerical approximation of plane waves by certain single layer potentials related to the acquisition geometry. After the densities of these potentials have been precomputed, each subsequent image reconstruction has the complexity of the regular filtration backprojection algorithm for the classical Radon transform. The peformance of the method is demonstrated in several numerical examples: one can see that the algorithm produces very accurate reconstructions if the data are accurate and sufficiently well sampled, on the other hand, it is sufficiently stable with respect to noise in the data

    Hierarchical reconstruction using geometry and sinogram restoration

    Get PDF
    "IP Editors' Information Classification Scheme (EDICS): 2.3."Includes bibliographical references (p. 30-32).Supported by the National Science Foundation. MIP-9015281 Supported by the Office of Naval Research. N00014-91-J-1004 Supported by the U.S. Army Research Office. DAAL03-86-K-0171 Supported by a U.S. Army Research Office Fellowship.Jerry L. Prince and Alan S. Willsky

    Reconstruction from projections based on detection and estimation of objects

    Get PDF
    Includes bibliographies.Caption title. "13 July 1983."National Science Foundation grant ECS-8012668David J. Rossi, Alan S. Willsky.pt.1. Performance analysis--pt.2. Robustness analysis
    • …
    corecore