3,460 research outputs found

    A Review of Commercial and Medical-Grade Physiological Monitoring Devices for Biofeedback-Assisted Quality of Life Improvement Studies

    Get PDF
    With the rise in wearable technology and "health culture", we are seeing an increasing interest and affordances in studying how to not only prolong life expectancy but also in how to improve individuals' quality of life. On the one hand, this attempts to give meaning to the increasing life expectancy, as living above a certain threshold of pain and lack of autonomy or mobility is both degrading and unfair. On the other hand, it lowers the cost of continuous care, as individuals with high quality of life indexes tend to have lower hospital readmissions or secondary complications, not to mention higher physical and mental health. In this paper, we evaluate the current state of the art in physiological therapy (biofeedback) along with the existing medical grade and consumer grade hardware for physiological research. We provide a quick primer on the most commonly monitored physiologic metrics, as well as a brief discussion on the current state of the art in biofeedback-assisted medical applications. We then go on to present a comparative analysis between medical and consumer grade biofeedback devices and discuss the hardware specifications and potential practical applications of each consumer grade device in terms of functionality and adaptability for controlled (laboratory) and uncontrolled (field) studies. We end this article with some empirical observations based on our study so that readers might use take them into consideration when arranging a laboratory or real-world experience, thus avoiding costly time delays and material expenditures.info:eu-repo/semantics/publishedVersio

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Virtual training for assembly tasks: a framework for the analysis of the cognitive impact on operators

    Get PDF
    The importance of training for operators in industrial contexts is widely highlighted in literature. Virtual Reality (VR) technology is considered an efficient solution for training, since it provides immersive, realistic, and interactive simulations environments where the operator can learn-by-doing, far from the risks of the real field. Its efficacy has been demonstrated by several studies, but a proper assessment of the operator’s cognitive response in terms of stress and cognitive load, during the use of such technology, is still lacking. This paper proposes a comprehensive methodology for the analysis of user’s cognitive states, suitable for each kind of training in the industrial sector and beyond. Preliminary feasibility analysis refers to virtual training for assembly of agricultural vehicles. The proposed protocol analysis allowed understanding the operators’ loads to optimize the VR training application, considering the mental demand during the training, and thus avoiding stress, mental overload, improving the user performance

    Biosensing and Actuation—Platforms Coupling Body Input-Output Modalities for Affective Technologies

    Get PDF
    Research in the use of ubiquitous technologies, tracking systems and wearables within mental health domains is on the rise. In recent years, affective technologies have gained traction and garnered the interest of interdisciplinary fields as the research on such technologies matured. However, while the role of movement and bodily experience to affective experience is well-established, how to best address movement and engagement beyond measuring cues and signals in technology-driven interactions has been unclear. In a joint industry-academia effort, we aim to remodel how affective technologies can help address body and emotional self-awareness. We present an overview of biosignals that have become standard in low-cost physiological monitoring and show how these can be matched with methods and engagements used by interaction designers skilled in designing for bodily engagement and aesthetic experiences. Taking both strands of work together offers unprecedented design opportunities that inspire further research. Through first-person soma design, an approach that draws upon the designer’s felt experience and puts the sentient body at the forefront, we outline a comprehensive work for the creation of novel interactions in the form of couplings that combine biosensing and body feedback modalities of relevance to affective health. These couplings lie within the creation of design toolkits that have the potential to render rich embodied interactions to the designer/user. As a result we introduce the concept of “orchestration”. By orchestration, we refer to the design of the overall interaction: coupling sensors to actuation of relevance to the affective experience; initiating and closing the interaction; habituating; helping improve on the users’ body awareness and engagement with emotional experiences; soothing, calming, or energising, depending on the affective health condition and the intentions of the designer. Through the creation of a range of prototypes and couplings we elicited requirements on broader orchestration mechanisms. First-person soma design lets researchers look afresh at biosignals that, when experienced through the body, are called to reshape affective technologies with novel ways to interpret biodata, feel it, understand it and reflect upon our bodies

    Technology and Information Fusion Needs to Address the Food, Energy, Water Systems (FEWS) Nexus Challenges

    Get PDF
    In response to the Food, Energy, Water Systems (FEWS) Nexus Challenge grant awarded by NSF, the team of investigators led by David Ebert, along with Christian Butzke, Melba Crawford, Phillip Owens, and Dimitrios Peroulis conducted a two-day workshop in Napa, California on November 5th and 6th, 2015. The workshop addressed the emerging issues in the food/energy/water systems throughout the diverse geography of the United States and over various crops and environmental conditions to better understand and model and ultimately devise a solution for the challenges to the FEWS nexus. One of the intended outcomes of the workshop was to generate a report that will chart the research challenges and opportunities for solving these challenges and have an impact on scientific fields including, sensing technology, hydrology, soil science, climate, data fusion, analysis, visualization, and data driven decision 2 making, as well as agricultural production, local and regional economies, sustainability and planning. The information contained in this post-workshop report serves as that foundation.In response to the Food, Energy, Water Systems (FEWS) Nexus Challenge grant awarded by NSF, the team of investigators led by David Ebert, along with Christian Butzke, Melba Crawford, Phillip Owens, and Dimitrios Peroulis conducted a two-day workshop in Napa, California on November 5th and 6th, 2015. The workshop addressed the emerging issues in the food/energy/water systems throughout the diverse geography of the United States and over various crops and environmental conditions to better understand and model and ultimately devise a solution for the challenges to the FEWS nexus. One of the intended outcomes of the workshop was to generate a report that will chart the research challenges and opportunities for solving these challenges and have an impact on scientific fields including, sensing technology, hydrology, soil science, climate, data fusion, analysis, visualization, and data driven decision 2 making, as well as agricultural production, local and regional economies, sustainability and planning. The information contained in this post-workshop report serves as that foundation
    • …
    corecore