400 research outputs found

    Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling

    Full text link
    The U.S. Department of Energy recently announced the first five grants for the Genomes to Life (GTL) Program. The goal of this program is to "achieve the most far-reaching of all biological goals: a fundamental, comprehensive, and systematic understanding of life." While more information about the program can be found at the GTL website (www.doegenomestolife.org), this paper provides an overview of one of the five GTL projects funded, "Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling." This project is a combined experimental and computational effort emphasizing developing, prototyping, and applying new computational tools and methods to ellucidate the biochemical mechanisms of the carbon sequestration of Synechococcus Sp., an abundant marine cyanobacteria known to play an important role in the global carbon cycle. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO2 are important terms in the global environmental response to anthropogenic atmospheric inputs of CO2 and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. The project includes five subprojects: an experimental investigation, three computational biology efforts, and a fifth which deals with addressing computational infrastructure challenges of relevance to this project and the Genomes to Life program as a whole. Our experimental effort is designed to provide biology and data to drive the computational efforts and includes significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Our computational efforts include coupling molecular simulation methods with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes and developing a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. Furthermore, given that the ultimate goal of this effort is to develop a systems-level of understanding of how the Synechococcus genome affects carbon fixation at the global scale, we will develop and apply a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, because the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats, we have also established a companion computational infrastructure to support this effort as well as the Genomes to Life program as a whole.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63164/1/153623102321112746.pd

    Computing Network of Diseases and Pharmacological Entities through the Integration of Distributed Literature Mining and Ontology Mapping

    Get PDF
    The proliferation of -omics (such as, Genomics, Proteomics) and -ology (such as, System Biology, Cell Biology, Pharmacology) have spawned new frontiers of research in drug discovery and personalized medicine. A vast amount (21 million) of published research results are archived in the PubMed and are continually growing in size. To improve the accessibility and utility of such a large number of literatures, it is critical to develop a suit of semantic sensitive technology that is capable of discovering knowledge and can also infer possible new relationships based on statistical co-occurrences of meaningful terms or concepts. In this context, this thesis presents a unified framework to mine a large number of literatures through the integration of latent semantic analysis (LSA) and ontology mapping. In particular, a parameter optimized, robust, scalable, and distributed LSA (DiLSA) technique was designed and implemented on a carefully selected 7.4 million PubMed records related to pharmacology. The DiLSA model was integrated with MeSH to make the model effective and efficient for a specific domain. An optimized multi-gram dictionary was customized by mapping the MeSH to build the DiLSA model. A fully integrated web-based application, called PharmNet, was developed to bridge the gap between biological knowledge and clinical practices. Preliminary analysis using the PharmNet shows an improved performance over global LSA model. A limited expert evaluation was performed to validate the retrieved results and network with biological literatures. A thorough performance evaluation and validation of results is in progress

    Automated Development of Semantic Data Models Using Scientific Publications

    Get PDF
    The traditional methods for analyzing information in digital documents have evolved with the ever-increasing volume of data. Some challenges in analyzing scientific publications include the lack of a unified vocabulary and a defined context, different standards and formats in presenting information, various types of data, and diverse areas of knowledge. These challenges hinder detecting, understanding, comparing, sharing, and querying information rapidly. I design a dynamic conceptual data model with common elements in publications from any domain, such as context, metadata, and tables. To enhance the models, I use related definitions contained in ontologies and the Internet. Therefore, this dissertation generates semantically-enriched data models from digital publications based on the Semantic Web principles, which allow people and computers to work cooperatively. Finally, this work uses a vocabulary and ontologies to generate a structured characterization and organize the data models. This organization allows integration, sharing, management, and comparing and contrasting information from publications

    K2/Kleisli and GUS: Experiments in Integrated Access to Genomic Data Sources

    Get PDF
    The integration of heterogeneous data sources and software systems is a major issue in the biomed ical community and several approaches have been explored: linking databases, on-the- fly integration through views, and integration through warehousing. In this paper we report on our experiences with two systems that were developed at the University of Pennsylvania: an integration system called K2, which has primarily been used to provide views over multiple external data sources and software systems; and a data warehouse called GUS which downloads, cleans, integrates and annotates data from multiple external data sources. Although the view and warehouse approaches each have their advantages, there is no clear winner . Therefore, users must consider how the data is to be used, what the performance guarantees must be, and how much programmer time and expertise is available to choose the best strategy for a particular application

    Development and Integration of Informatic Tools for Qualitative and Quantitative Characterization of Proteomic Datasets Generated by Tandem Mass Spectrometry

    Get PDF
    Shotgun proteomic experiments provide qualitative and quantitative analytical information from biological samples ranging in complexity from simple bacterial isolates to higher eukaryotes such as plants and humans and even to communities of microbial organisms. Improvements to instrument performance, sample preparation, and informatic tools are increasing the scope and volume of data that can be analyzed by mass spectrometry (MS). To accommodate for these advances, it is becoming increasingly essential to choose and/or create tools that can not only scale well but also those that make more informed decisions using additional features within the data. Incorporating novel and existing tools into a scalable, modular workflow not only provides more accurate, contextualized perspectives of processed data, but it also generates detailed, standardized outputs that can be used for future studies dedicated to mining general analytical or biological features, anomalies, and trends. This research developed cyber-infrastructure that would allow a user to seamlessly run multiple analyses, store the results, and share processed data with other users. The work represented in this dissertation demonstrates successful implementation of an enhanced bioinformatics workflow designed to analyze raw data directly generated from MS instruments and to create fully-annotated reports of qualitative and quantitative protein information for large-scale proteomics experiments. Answering these questions requires several points of engagement between informatics and analytical understanding of the underlying biochemistry of the system under observation. Deriving meaningful information from analytical data can be achieved through linking together the concerted efforts of more focused, logistical questions. This study focuses on the following aspects of proteomics experiments: spectra to peptide matching, peptide to protein mapping, and protein quantification and differential expression. The interaction and usability of these analyses and other existing tools are also described. By constructing a workflow that allows high-throughput processing of massive datasets, data collected within the past decade can be standardized and updated with the most recent analyses

    NCBI’s virus discovery codeathon: building “FIVE” —the Federated Index of Viral Experiments API index

    Get PDF
    Viruses represent important test cases for data federation due to their genome size and the rapid increase in sequence data in publicly available databases. However, some consequences of previously decentralized (unfederated) data are lack of consensus or comparisons between feature annotations. Unifying or displaying alternative annotations should be a priority both for communities with robust entry representation and for nascent communities with burgeoning data sources. To this end, during this three-day continuation of the Virus Hunting Toolkit codeathon series (VHT-2), a new integrated and federated viral index was elaborated. This Federated Index of Viral Experiments (FIVE) integrates pre-existing and novel functional and taxonomy annotations and virus–host pairings. Variability in the context of viral genomic diversity is often overlooked in virus databases. As a proof-of-concept, FIVE was the first attempt to include viral genome variation for HIV, the most well-studied human pathogen, through viral genome diversity graphs. As per the publication of this manuscript, FIVE is the first implementation of a virus-specific federated index of such scope. FIVE is coded in BigQuery for optimal access of large quantities of data and is publicly accessible. Many projects of database or index federation fail to provide easier alternatives to access or query information. To this end, a Python API query system was developed to enhance the accessibility of FIVE

    Big tranSMART for clinical decision making

    Get PDF
    Molecular profiling data based patient stratification plays a key role in clinical decision making, such as identification of disease subgroups and prediction of treatment responses of individual subjects. Many existing knowledge management systems like tranSMART enable scientists to do such analysis. But in the big data era, molecular profiling data size increases sharply due to new biological techniques, such as next generation sequencing. None of the existing storage systems work well while considering the three ”V” features of big data (Volume, Variety, and Velocity). New Key Value data stores like Apache HBase and Google Bigtable can provide high speed queries by the Key. These databases can be modeled as Distributed Ordered Table (DOT), which horizontally partitions a table into regions and distributes regions to region servers by the Key. However, none of existing data models work well for DOT. A Collaborative Genomic Data Model (CGDM) has been designed to solve all these is- sues. CGDM creates three Collaborative Global Clustering Index Tables to improve the data query velocity. Microarray implementation of CGDM on HBase performed up to 246, 7 and 20 times faster than the relational data model on HBase, MySQL Cluster and MongoDB. Single nucleotide polymorphism implementation of CGDM on HBase outperformed the relational model on HBase and MySQL Cluster by up to 351 and 9 times. Raw sequence implementation of CGDM on HBase gains up to 440-fold and 22-fold speedup, compared to the sequence alignment map format implemented in HBase and a binary alignment map server. The integration into tranSMART shows up to 7-fold speedup in the data export function. In addition, a popular hierarchical clustering algorithm in tranSMART has been used as an application to indicate how CGDM can influence the velocity of the algorithm. The optimized method using CGDM performs more than 7 times faster than the same method using the relational model implemented in MySQL Cluster.Open Acces
    • …
    corecore