2,049 research outputs found

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    On the path-avoidance vertex-coloring game

    Full text link
    For any graph FF and any integer r≥2r\geq 2, the \emph{online vertex-Ramsey density of FF and rr}, denoted m∗(F,r)m^*(F,r), is a parameter defined via a deterministic two-player Ramsey-type game (Painter vs.\ Builder). This parameter was introduced in a recent paper \cite{mrs11}, where it was shown that the online vertex-Ramsey density determines the threshold of a similar probabilistic one-player game (Painter vs.\ the binomial random graph Gn,pG_{n,p}). For a large class of graphs FF, including cliques, cycles, complete bipartite graphs, hypercubes, wheels, and stars of arbitrary size, a simple greedy strategy is optimal for Painter and closed formulas for m∗(F,r)m^*(F,r) are known. In this work we show that for the case where F=PℓF=P_\ell is a (long) path, the picture is very different. It is not hard to see that m∗(Pℓ,r)=1−1/k∗(Pℓ,r)m^*(P_\ell,r)= 1-1/k^*(P_\ell,r) for an appropriately defined integer k∗(Pℓ,r)k^*(P_\ell,r), and that the greedy strategy gives a lower bound of k∗(Pℓ,r)≥ℓrk^*(P_\ell,r)\geq \ell^r. We construct and analyze Painter strategies that improve on this greedy lower bound by a factor polynomial in ℓ\ell, and we show that no superpolynomial improvement is possible

    Online size Ramsey numbers: Odd cycles vs connected graphs

    Full text link
    Given two graph families H1\mathcal H_1 and H2\mathcal H_2, a size Ramsey game is played on the edge set of KNK_\mathbb{N}. In every round, Builder selects an edge and Painter colours it red or blue. Builder is trying to force Painter to create as soon as possible a red copy of a graph from H1\mathcal H_1 or a blue copy of a graph from H2\mathcal H_2. The online (size) Ramsey number r~(H1,H2)\tilde{r}(\mathcal H_1,\mathcal H_2) is the smallest number of rounds in the game provided Builder and Painter play optimally. We prove that if H1\mathcal H_1 is the family of all odd cycles and H2\mathcal H_2 is the family of all connected graphs on nn vertices and mm edges, then r~(H1,H2)≥φn+m−2φ+1\tilde{r}(\mathcal H_1,\mathcal H_2)\ge \varphi n + m-2\varphi+1, where φ\varphi is the golden ratio, and for n≥3n\ge 3, m≤(n−1)2/4m\le (n-1)^2/4 we have r~(H1,H2)≤n+2m+O(m−n+1)\tilde{r}(\mathcal H_1,\mathcal H_2)\le n+2m+O(\sqrt{m-n+1}). We also show that r~(C3,Pn)≤3n−4\tilde{r}(C_3,P_n)\le 3n-4 for n≥3n\ge 3. As a consequence we get 2.6n−3≤r~(C3,Pn)≤3n−42.6n-3\le \tilde{r}(C_3,P_n)\le 3n-4 for every n≥3n\ge 3.Comment: 14 pages, 0 figures; added appendix containing intuition behind the potential function used for lower bound; corrected typos and added a few clarification

    Ramsey games with giants

    Get PDF
    The classical result in the theory of random graphs, proved by Erdos and Renyi in 1960, concerns the threshold for the appearance of the giant component in the random graph process. We consider a variant of this problem, with a Ramsey flavor. Now, each random edge that arrives in the sequence of rounds must be colored with one of R colors. The goal can be either to create a giant component in every color class, or alternatively, to avoid it in every color. One can analyze the offline or online setting for this problem. In this paper, we consider all these variants and provide nontrivial upper and lower bounds; in certain cases (like online avoidance) the obtained bounds are asymptotically tight.Comment: 29 pages; minor revision

    Bipartite, Size, and Online Ramsey Numbers of Some Cycles and Paths

    Get PDF
    The basic premise of Ramsey Theory states that in a sufficiently large system, complete disorder is impossible. One instance from the world of graph theory says that given two fixed graphs F and H, there exists a finitely large graph G such that any red/blue edge coloring of the edges of G will produce a red copy of F or a blue copy of H. Much research has been conducted in recent decades on quantifying exactly how large G must be if we consider different classes of graphs for F and H. In this thesis, we explore several Ramsey- type problems with a particular focus on paths and cycles. We first examine the bipartite size Ramsey number of a path on n vertices, bˆr(Pn), and give an upper bound using a random graph construction motivated by prior upper bound improvements in similar problems. Next, we consider the size Ramsey number Rˆ (C, Pn) and provide a significant improvement to the upper bound using a very structured graph, the cube of a path, as opposed to a random construction. We also prove a small improvement to the lower bound and show that the r-colored version of this problem is asymptotically linear in rn. Lastly, we give an upper bound for the online Ramsey number R˜ (C, Pn)

    Erdos-Szekeres-type theorems for monotone paths and convex bodies

    Get PDF
    For any sequence of positive integers j_1 < j_2 < ... < j_n, the k-tuples (j_i,j_{i + 1},...,j_{i + k-1}), i=1, 2,..., n - k+1, are said to form a monotone path of length n. Given any integers n\ge k\ge 2 and q\ge 2, what is the smallest integer N with the property that no matter how we color all k-element subsets of [N]=\{1,2,..., N\} with q colors, we can always find a monochromatic monotone path of length n? Denoting this minimum by N_k(q,n), it follows from the seminal 1935 paper of Erd\H os and Szekeres that N_2(q,n)=(n-1)^q+1 and N_3(2,n) = {2n -4\choose n-2} + 1. Determining the other values of these functions appears to be a difficult task. Here we show that 2^{(n/q)^{q-1}} \leq N_3(q,n) \leq 2^{n^{q-1}\log n}, for q \geq 2 and n \geq q+2. Using a stepping-up approach that goes back to Erdos and Hajnal, we prove analogous bounds on N_k(q,n) for larger values of k, which are towers of height k-1 in n^{q-1}. As a geometric application, we prove the following extension of the Happy Ending Theorem. Every family of at least M(n)=2^{n^2 \log n} plane convex bodies in general position, any pair of which share at most two boundary points, has n members in convex position, that is, it has n members such that each of them contributes a point to the boundary of the convex hull of their union.Comment: 32 page
    • …
    corecore