15 research outputs found

    Dynamic communication across supply chain services

    Get PDF
    This thesis deals with the design of communication protocol solutions across a Supply Chain Management System. These solutions are capable of operating in multi-agent environments, and allow customers to order services online. As part of two Australian Research Council (ARC) grants, it is divided into four main sections. The first issue deals with a dynamic communication protocol, which aims at agent-to-agent operability in an open environment, such as the Internet. In the second section, we proposed a protocol correctness system, which enables detection of deadlock errors in communication protocols. Further, a comparison of the proposed validation techniques and those currently in use, is provided. Next, the problem of routing and scheduling in the transport industry was tackled, resulting in the development of an autonomous route scheduling system, MIDAS (Mobile Intelligent Distributed Application Software). The MIDAS server uses wireless technology to communicate with different parts of the system, which was investigated in the final section of the thesis. The MIDAS system was tested on devices with a GSM-enabled network connection, with results indicating that it takes less than thirty seconds for information to be processed and transmitted. Further, studies relating to this topic could involve extensions of the proposed systems using SOAP (Simple Object Access Protocol). While undertaking my PhD, I wrote the following five papers, which were published in various journals and conferences: 1. Towards the Right Communication Protocol for Web Services, International Journal for Web Services Research (IJWSR), June 2005 2. MIDAS - An Integrated E-Commerce Solution for the Australian Transport Industries, International Journal on Web Engineering and Technology (IJWET), 1(3), 353-373, October 2004 3. MIDAS’s Routing and Scheduling Approach for the Australian Transport Industries, International OTM (OntheMove) Workshops, November 2003 4. An XML-based Conversational Protocol for Web Services, 18th ACM International Symposium on Applied Computing (SAC), 1179-1184, May 2003 5. Towards Robust and Scalable Infrastructure for Web Service, IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), December 200

    Behavioural Types: from Theory to Tools

    Get PDF
    This book presents research produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems (BETTY), a European research network that was funded from October 2012 to October 2016. The technical theme of BETTY was the use of behavioural type systems in programming languages, to specify and verify properties of programs beyond the traditional use of type systems to describe data processing. A significant area within behavioural types is session types, which concerns the use of type-theoretic techniques to describe communication protocols so that static typechecking or dynamic monitoring can verify that protocols are implemented correctly. This is closely related to the topic of choreography, in which system design starts from a description of the overall communication flows. Another area is behavioural contracts, which describe the obligations of interacting agents in a way that enables blame to be attributed to the agent responsible for failed interaction. Type-theoretic techniques can also be used to analyse potential deadlocks due to cyclic dependencies between inter-process interactions. BETTY was organised into four Working Groups: (1) Foundations; (2) Security; (3) Programming Languages; (4) Tools and Applications. Working Groups 1–3 produced “state-of-the-art reports”, which originally intended to take snapshots of the field at the time the network started, but grew into substantial survey articles including much research carried out during the network [1–3]. The situation for Working Group 4 was different. When the network started, the community had produced relatively few implementations of programming languages or tools. One of the aims of the network was to encourage more implementation work, and this was a great success. The community as a whole has developed a greater interest in putting theoretical ideas into practice. The sixteen chapters in this book describe systems that were either completely developed, or substantially extended, during BETTY. The total of 41 co-authors represents a significant proportion of the active participants in the network (around 120 people who attended at least one meeting). The book is a report on the new state of the art created by BETTY in xv xvi Preface the area of Working Group 4, and the title “Behavioural Types: from Theory to Tools” summarises the trajectory of the community during the last four years. The book begins with two tutorials by Atzei et al. on contract-oriented design of distributed systems. Chapter 1 introduces the CO2 contract specifi- cation language and the Diogenes toolchain. Chapter 2 describes how timing constraints can be incorporated into the framework and checked with the CO2 middleware. Part of the CO2 middleware is a monitoring system, and the theme of monitoring continues in the next two chapters. In Chapter 3, Attard et al. present detectEr, a runtime monitoring tool for Erlang programs that allows correctness properties to be expressed in Hennessy-Milner logic. In Chapter 4, which is the first chapter about session types, Neykova and Yoshida describe a runtime verification framework for Python programs. Communication protocols are specified in the Scribble language, which is based on multiparty session types. The next three chapters deal with choreographic programming. In Chap- ter 5, Debois and Hildebrandt present a toolset for working with dynamic condition response (DCR) graphs, which are a graphical formalism for choreography. Chapter 6, by Lange et al., continues the graphical theme with ChorGram, a tool for synthesising global graphical choreographies from collections of communicating finite-state automata. Giallorenzo et al., in Chapter 7, consider runtime adaptation. They describe AIOCJ, a choreographic programming language in which runtime adaptation is supported with a guarantee that it doesn’t introduce deadlocks or races. Deadlock analysis is important in other settings too, and there are two more chapters about it. In Chapter 8, Padovani describes the Hypha tool, which uses a type-based approach to check deadlock-freedom and lock-freedom of systems modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a tool for analysing deadlocks in Java programs; this tool, called JaDA, is based on a behavioural type system. The next three chapters report on projects that have added session types to functional programming languages in order to support typechecking of communication-based code. In Chapter 10, Orchard and Yoshida describe an implementation of session types in Haskell, and survey several approaches to typechecking the linearity conditions required for safe session implemen- tation. In Chapter 11, Melgratti and Padovani describe an implementation of session types in OCaml. Their system uses runtime linearity checking. In Chapter 12, Lindley and Morris describe an extension of the web programming language Links with session types; their work contrasts with the previous two chapters in being less constrained by an existing language design. Continuing the theme of session types in programming languages, the next two chapters describe two approaches based on Java. Hu’s work, presented in Chapter 13, starts with the Scribble description of a multiparty session type and generates an API in the form of a collection of Java classes, each class containing the communication methods that are available in a particular state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble specification. Their StMungo tool generates an API as a single class with an associated typestate specification to constrain sequences of method calls. Code that uses the API can be checked for correctness with the Mungo typechecker. Finally, there are two chapters about programming with the MPI libraries. Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble, to describe protocols that parametric in the number of runtime roles. From a Pabble specification they generate C code that uses MPI for communication and is guaranteed correct by construction. Chapter 16, by Ng et al., describes the ParTypes framework for analysing existing C+MPI programs with respect to protocols defined in an extension of Scribble. We hope that the book will serve a useful purpose as a report on the activities of COST Action IC1201 and as a survey of programming languages and tools based on behavioural types

    Behavioural Types: from Theory to Tools

    Get PDF
    This book presents research produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems (BETTY), a European research network that was funded from October 2012 to October 2016. The technical theme of BETTY was the use of behavioural type systems in programming languages, to specify and verify properties of programs beyond the traditional use of type systems to describe data processing. A significant area within behavioural types is session types, which concerns the use of type-theoretic techniques to describe communication protocols so that static typechecking or dynamic monitoring can verify that protocols are implemented correctly. This is closely related to the topic of choreography, in which system design starts from a description of the overall communication flows. Another area is behavioural contracts, which describe the obligations of interacting agents in a way that enables blame to be attributed to the agent responsible for failed interaction. Type-theoretic techniques can also be used to analyse potential deadlocks due to cyclic dependencies between inter-process interactions. BETTY was organised into four Working Groups: (1) Foundations; (2) Security; (3) Programming Languages; (4) Tools and Applications. Working Groups 1–3 produced “state-of-the-art reports”, which originally intended to take snapshots of the field at the time the network started, but grew into substantial survey articles including much research carried out during the network [1–3]. The situation for Working Group 4 was different. When the network started, the community had produced relatively few implementations of programming languages or tools. One of the aims of the network was to encourage more implementation work, and this was a great success. The community as a whole has developed a greater interest in putting theoretical ideas into practice. The sixteen chapters in this book describe systems that were either completely developed, or substantially extended, during BETTY. The total of 41 co-authors represents a significant proportion of the active participants in the network (around 120 people who attended at least one meeting). The book is a report on the new state of the art created by BETTY in xv xvi Preface the area of Working Group 4, and the title “Behavioural Types: from Theory to Tools” summarises the trajectory of the community during the last four years. The book begins with two tutorials by Atzei et al. on contract-oriented design of distributed systems. Chapter 1 introduces the CO2 contract specifi- cation language and the Diogenes toolchain. Chapter 2 describes how timing constraints can be incorporated into the framework and checked with the CO2 middleware. Part of the CO2 middleware is a monitoring system, and the theme of monitoring continues in the next two chapters. In Chapter 3, Attard et al. present detectEr, a runtime monitoring tool for Erlang programs that allows correctness properties to be expressed in Hennessy-Milner logic. In Chapter 4, which is the first chapter about session types, Neykova and Yoshida describe a runtime verification framework for Python programs. Communication protocols are specified in the Scribble language, which is based on multiparty session types. The next three chapters deal with choreographic programming. In Chap- ter 5, Debois and Hildebrandt present a toolset for working with dynamic condition response (DCR) graphs, which are a graphical formalism for choreography. Chapter 6, by Lange et al., continues the graphical theme with ChorGram, a tool for synthesising global graphical choreographies from collections of communicating finite-state automata. Giallorenzo et al., in Chapter 7, consider runtime adaptation. They describe AIOCJ, a choreographic programming language in which runtime adaptation is supported with a guarantee that it doesn’t introduce deadlocks or races. Deadlock analysis is important in other settings too, and there are two more chapters about it. In Chapter 8, Padovani describes the Hypha tool, which uses a type-based approach to check deadlock-freedom and lock-freedom of systems modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a tool for analysing deadlocks in Java programs; this tool, called JaDA, is based on a behavioural type system. The next three chapters report on projects that have added session types to functional programming languages in order to support typechecking of communication-based code. In Chapter 10, Orchard and Yoshida describe an implementation of session types in Haskell, and survey several approaches to typechecking the linearity conditions required for safe session implemen- tation. In Chapter 11, Melgratti and Padovani describe an implementation of session types in OCaml. Their system uses runtime linearity checking. In Chapter 12, Lindley and Morris describe an extension of the web programming language Links with session types; their work contrasts with the previous two chapters in being less constrained by an existing language design. Continuing the theme of session types in programming languages, the next two chapters describe two approaches based on Java. Hu’s work, presented in Chapter 13, starts with the Scribble description of a multiparty session type and generates an API in the form of a collection of Java classes, each class containing the communication methods that are available in a particular state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble specification. Their StMungo tool generates an API as a single class with an associated typestate specification to constrain sequences of method calls. Code that uses the API can be checked for correctness with the Mungo typechecker. Finally, there are two chapters about programming with the MPI libraries. Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble, to describe protocols that parametric in the number of runtime roles. From a Pabble specification they generate C code that uses MPI for communication and is guaranteed correct by construction. Chapter 16, by Ng et al., describes the ParTypes framework for analysing existing C+MPI programs with respect to protocols defined in an extension of Scribble. We hope that the book will serve a useful purpose as a report on the activities of COST Action IC1201 and as a survey of programming languages and tools based on behavioural types

    Behavioural Types

    Get PDF
    Behavioural type systems in programming languages support the specification and verification of properties of programs beyond the traditional use of type systems to describe data processing. A major example of such a property is correctness of communication in concurrent and distributed systems, motivated by the importance of structured communication in modern software. Behavioural Types: from Theory to Tools presents programming languages and software tools produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems, a European research network that was funded from October 2012 to October 2016. As a survey of the most recent developments in the application of behavioural type systems, it is a valuable reference for researchers in the field, as well as an introduction to the area for graduate students and software developers

    Behavioural Types

    Get PDF
    Behavioural type systems in programming languages support the specification and verification of properties of programs beyond the traditional use of type systems to describe data processing. A major example of such a property is correctness of communication in concurrent and distributed systems, motivated by the importance of structured communication in modern software. Behavioural Types: from Theory to Tools presents programming languages and software tools produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems, a European research network that was funded from October 2012 to October 2016. As a survey of the most recent developments in the application of behavioural type systems, it is a valuable reference for researchers in the field, as well as an introduction to the area for graduate students and software developers

    Runtime Monitoring for Uncertain Times

    Get PDF
    In Runtime Verification (RV), monitors check programs for correct operation at execution time. Also called Runtime Monitoring, RV offers advantages over other approaches to program verification. Efficient monitoring is possible for programs where static checking is cost-prohibitive. Runtime monitors may test for execution faults like hardware failure, as well as logical faults. Unlike simple log checking, monitors are typically constructed using formal languages and methods that precisely define expectations and guarantees. Despite the advantages of RV, however, adoption remains low. Applying Runtime Monitoring techniques to real systems requires addressing practical concerns that have garnered little attention from researchers. System operators need monitors that provide immediate diagnostic information before and after failures, that are simple to operate over distributed systems, and that remain reliable when communication is not. These challenges are solvable, and solving them is a necessary step towards widespread RV deployment. This thesis provides solutions to these and other barriers to practical Runtime Monitoring. We address the need for reporting diagnostic information from monitored programs with nfer, a language and system for event stream abstraction. Nfer supports the automatic extraction of the structure of real-time software and includes integrations with popular programming languages. We also provide for the operation of nfer and other monitoring tools over distributed systems with Palisade, a framework built for low-latency detection of embedded system anomalies. Finally, we supply a method to ensure program properties may be monitored despite unreliable communication channels. We classify monitorable properties over general unreliable conditions and define an algorithm for when more specific conditions are known

    Dynamic Protocol Reverse Engineering a Grammatical Inference Approach

    Get PDF
    Round trip engineering of software from source code and reverse engineering of software from binary files have both been extensively studied and the state-of-practice have documented tools and techniques. Forward engineering of protocols has also been extensively studied and there are firmly established techniques for generating correct protocols. While observation of protocol behavior for performance testing has been studied and techniques established, reverse engineering of protocol control flow from observations of protocol behavior has not received the same level of attention. State-of-practice in reverse engineering the control flow of computer network protocols is comprised of mostly ad hoc approaches. We examine state-of-practice tools and techniques used in three open source projects: Pidgin, Samba, and rdesktop . We examine techniques proposed by computational learning researchers for grammatical inference. We propose to extend the state-of-art by inferring protocol control flow using grammatical inference inspired techniques to reverse engineer automata representations from captured data flows. We present evidence that grammatical inference is applicable to the problem domain under consideration

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems
    corecore