7,160 research outputs found

    Recursive Online Enumeration of All Minimal Unsatisfiable Subsets

    Full text link
    In various areas of computer science, we deal with a set of constraints to be satisfied. If the constraints cannot be satisfied simultaneously, it is desirable to identify the core problems among them. Such cores are called minimal unsatisfiable subsets (MUSes). The more MUSes are identified, the more information about the conflicts among the constraints is obtained. However, a full enumeration of all MUSes is in general intractable due to the large number (even exponential) of possible conflicts. Moreover, to identify MUSes algorithms must test sets of constraints for their simultaneous satisfiabilty. The type of the test depends on the application domains. The complexity of tests can be extremely high especially for domains like temporal logics, model checking, or SMT. In this paper, we propose a recursive algorithm that identifies MUSes in an online manner (i.e., one by one) and can be terminated at any time. The key feature of our algorithm is that it minimizes the number of satisfiability tests and thus speeds up the computation. The algorithm is applicable to an arbitrary constraint domain and its effectiveness demonstrates itself especially in domains with expensive satisfiability checks. We benchmark our algorithm against state of the art algorithm on Boolean and SMT constraint domains and demonstrate that our algorithm really requires less satisfiability tests and consequently finds more MUSes in given time limits

    Incrementally Computing Minimal Unsatisfiable Cores of QBFs via a Clause Group Solver API

    Full text link
    We consider the incremental computation of minimal unsatisfiable cores (MUCs) of QBFs. To this end, we equipped our incremental QBF solver DepQBF with a novel API to allow for incremental solving based on clause groups. A clause group is a set of clauses which is incrementally added to or removed from a previously solved QBF. Our implementation of the novel API is related to incremental SAT solving based on selector variables and assumptions. However, the API entirely hides selector variables and assumptions from the user, which facilitates the integration of DepQBF in other tools. We present implementation details and, for the first time, report on experiments related to the computation of MUCs of QBFs using DepQBF's novel clause group API.Comment: (fixed typo), camera-ready version, 6-page tool paper, to appear in proceedings of SAT 2015, LNCS, Springe

    NMUS: Structural Analysis for Improving the Derivation of All MUSes in Overconstrained Numeric CSPs

    Get PDF
    Models are used in science and engineering for experimentation, analysis, model-based diagnosis, design and planning/sheduling applications. Many of these models are overconstrained Numeric Constraint Satisfaction Problems (NCSP), where the numeric constraints could have linear or polynomial relations. In practical scenarios, it is very useful to know which parts of the overconstrained NCSP instances cause the unsolvability. Although there are algorithms to find all optimal solutions for this problem, they are computationally expensive, and hence may not be applicable to large and real-world problems. Our objective is to improve the performance of these algorithms for numeric domains using structural analysis. We provide experimental results showing that the use of the different strategies proposed leads to a substantially improved performance and it facilitates the application of solving larger and more realistic problems.Ministerio de Educación y Ciencia DIP2006-15476-C02-0

    Integrating Conflict Driven Clause Learning to Local Search

    Full text link
    This article introduces SatHyS (SAT HYbrid Solver), a novel hybrid approach for propositional satisfiability. It combines local search and conflict driven clause learning (CDCL) scheme. Each time the local search part reaches a local minimum, the CDCL is launched. For SAT problems it behaves like a tabu list, whereas for UNSAT ones, the CDCL part tries to focus on minimum unsatisfiable sub-formula (MUS). Experimental results show good performances on many classes of SAT instances from the last SAT competitions
    corecore