268 research outputs found

    Immunogenetics

    Get PDF
    This open access book explores techniques for working in the field of immunogenetics, i.e. fundamental and translational research into the adaptive immune receptor repertoire. Many chapters are dedicated to lab protocols, bioinformatics, and immunoinformatics analysis of high-resolution immunome analysis, exemplified by numerous applications. Additionally, the newest technological variations on these protocols are discussed, including non-amplicon, single-cell, and cell-free strategies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Immunogenetics: Methods and Protocols covers a broad spectrum of methodologies for applications in research and clinical diagnostics to illustrate the impact that immunogenetics has achieved and will further expand in all fields of medicine, from infection and (auto)immunity, to vaccination, to lymphoid malignancy and tumor immunity

    Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19.

    Get PDF
    Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100

    Enhanced Concrete Bridge Assessment Using Artificial Intelligence and Mixed Reality

    Get PDF
    Conventional methods for visual assessment of civil infrastructures have certain limitations, such as subjectivity of the collected data, long inspection time, and high cost of labor. Although some new technologies (i.e. robotic techniques) that are currently in practice can collect objective, quantified data, the inspector\u27s own expertise is still critical in many instances since these technologies are not designed to work interactively with human inspector. This study aims to create a smart, human-centered method that offers significant contributions to infrastructure inspection, maintenance, management practice, and safety for the bridge owners. By developing a smart Mixed Reality (MR) framework, which can be integrated into a wearable holographic headset device, a bridge inspector, for example, can automatically analyze a certain defect such as a crack that he or she sees on an element, display its dimension information in real-time along with the condition state. Such systems can potentially decrease the time and cost of infrastructure inspections by accelerating essential tasks of the inspector such as defect measurement, condition assessment and data processing to management systems. The human centered artificial intelligence (AI) will help the inspector collect more quantified and objective data while incorporating inspector\u27s professional judgment. This study explains in detail the described system and related methodologies of implementing attention guided semi-supervised deep learning into mixed reality technology, which interacts with the human inspector during assessment. Thereby, the inspector and the AI will collaborate/communicate for improved visual inspection

    Design of Test Articles and Monitoring System for the Characterization of HIRF Effects on a Fault-Tolerant Computer Communication System

    Get PDF
    This report describes the design of the test articles and monitoring systems developed to characterize the response of a fault-tolerant computer communication system when stressed beyond the theoretical limits for guaranteed correct performance. A high-intensity radiated electromagnetic field (HIRF) environment was selected as the means of injecting faults, as such environments are known to have the potential to cause arbitrary and coincident common-mode fault manifestations that can overwhelm redundancy management mechanisms. The monitors generate stimuli for the systems-under-test (SUTs) and collect data in real-time on the internal state and the response at the external interfaces. A real-time health assessment capability was developed to support the automation of the test. A detailed description of the nature and structure of the collected data is included. The goal of the report is to provide insight into the design and operation of these systems, and to serve as a reference document for use in post-test analyses

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Towards Probabilistic and Partially-Supervised Structural Health Monitoring

    Get PDF
    One of the most significant challenges for signal processing in data-based structural health monitoring (SHM) is a lack of comprehensive data; in particular, recording labels to describe what each of the measured signals represent. For example, consider an offshore wind-turbine, monitored by an SHM strategy. It is infeasible to artificially damage such a high-value asset to collect signals that might relate to the damaged structure in situ; additionally, signals that correspond to abnormal wave-loading, or unusually low-temperatures, could take several years to be recorded. Regular inspections of the turbine in operation, to describe (and label) what measured data represent, would also prove impracticable -- conventionally, it is only possible to check various components (such as the turbine blades) following manual inspection; this involves travelling to a remote, offshore location, which is a high-cost procedure. Therefore, the collection of labelled data is generally limited by some expense incurred when investigating the signals; this might include direct costs, or loss of income due to down-time. Conventionally, incomplete label information forces a dependence on unsupervised machine learning, limiting SHM strategies to damage (i.e. novelty) detection. However, while comprehensive and fully labelled data can be rare, it is often possible to provide labels for a limited subset of data, given a label budget. In this scenario, partially-supervised machine learning should become relevant. The associated algorithms offer an alternative approach to monitor measured data, as they can utilise both labelled and unlabelled signals, within a unifying training scheme. In consequence, this work introduces (and adapts) partially-supervised algorithms for SHM; specifically, semi-supervised and active learning methods. Through applications to experimental data, semi-supervised learning is shown to utilise information in the unlabelled signals, alongside a limited set of labelled data, to further update a predictive-model. On the other hand, active learning improves the predictive performance by querying specific signals to investigate, which are assumed the most informative. Both discriminative and generative methods are investigated, leading towards a novel, probabilistic framework, to classify, investigate, and label signals for online SHM. The findings indicate that, through partially-supervised learning, the cost associated with labelling data can be managed, as the information in a selected subset of labelled signals can be combined with larger sets of unlabelled data -- increasing the potential scope and predictive performance for data-driven SHM

    Book Reviews

    Get PDF

    Book Reviews

    Get PDF

    Book Reviews

    Get PDF
    • …
    corecore