13,357 research outputs found

    Yra1-bound RNA–DNA hybrids cause orientation-independent transcription– replication collisions and telomere instability

    Get PDF
    R loops are an important source of genome instability, largely due to their negative impact on replication progression. Yra1/ALY is an abundant RNA-binding factor conserved from yeast to humans and required for mRNA export, but its excess causes lethality and genome instability. Here, we show that, in addition to ssDNA and ssRNA, Yra1 binds RNA–DNA hybrids in vitro and, when artificially overexpressed, can be recruited to chromatin in an RNA– DNA hybrid-dependent manner, stabilizing R loops and converting them into replication obstacles in vivo. Importantly, an excess of Yra1 increases R-loop-mediated genome instability caused by transcription–replication collisions regardless of whether they are codirectional or head-on. It also induces telomere shortening in telomerase-negative cells and accelerates senescence, consistent with a defect in telomere replication. Our results indicate that RNA–DNA hybrids form transiently in cells regardless of replication and, after stabilization by excess Yra1, compromise genome integrity, in agreement with a two-step model of R-loop-mediated genome instability. This work opens new perspectives to understand transcription-associated genome instability in repair-deficient cells, including tumoral cells.European Research Council ERC2014 AdG669898 TARLOOPMinisterio de Economía y Competitividad BFU2016-75058-PJunta de Andalucía PA12- BIO123

    The alternate GNB3 splice variant, Gβ3s, exhibits an altered signalling response to EGF stimulation, which leads to enhanced cell migration

    Get PDF
    It has recently been reported that the duplication of the GNB3 gene has been shown to be directly linked to an obesity phenotype, both in humans and also in a humanised mouse model. Moreover, the common human GNB3 c.825C>T polymorphism (rs5443) causes this ubiquitously expressed gene to be aberrantly spliced approximately 50% of the time leading to the production of both a normal Gβ3 protein and a truncated, possibly less stable subunit, known as Gβ3s. The presence of the GNB3 825T allele has previously been shown to be associated with predisposition to hypertension, obesity, various cancers, Alzheimers, age related cognitive function, erectile dysfunction as well as a marker for pharmacogenetic drug action. Great controversy, however, currently exists as to whether these phenotypes associated with the 825T allele are a) mainly due to the presence of the smaller, possibly more active, Gβ3s subunit or b) merely down to the haploinsufficiency of the normal GNB3 transcript, due to its frequent aberrant splicing. In order to try and address these two conflicting hypothesis, we report on the identification and characterisation of signalling alterations unique to the presence of Gβ3s protein subunit. Moreover we also show the physiological consequences associated with altered signalling, directly induced by the Gβ3s subunit. For this, we used both an EBV transformed lymphoblast cell line homozygote for GNB3 825T/825T (TT) and a stable Gβ3s expressing recombinant COS-7 clone. In both of these cell lines that express the Gβ3s subunit, we found enhanced cytosolic calcium influx upon stimulation with EGF, TGFα and VEGF ligands, as compared to “normal” GNB3 controls with the 825C/825C (CC) genotype. This aberrant calcium influx also led to an increase in ERK, but not AKT1, phosphorylation. Despite the lack of AKT1 activation, we paradoxically observed a significant increase in phosphorylation of its downstream substrates, namely mTOR and p70S6k (KS6B2). Moreover we observed a decrease in phospho FoxO3a only in Gβ3s expressing cells, but not in the “normal” GNB3 (CC) control cell line. The presence of the Gβ3s subunit also appeared to alter the distinct localisation patterns of both Foxo3a and AKT1, while also increasing the colocalisation of mTOR and p70S6K. Subsequent growth factor stimulation studies revealed that EGF treatment, of Gβ3s expressing cells, appeared to cause a significant decrease in cAMP levels, which, in turn resulted in both enhanced caveolin-1a phosphorylation, and an increase in actin stress fibre formation. The identification of these distinct Gβ3s specific signalling alterations were indicative of a more aggressive migratory phenotype. This led us to further investigate and confirm that the presence of the Gβ3s subunit also appears to cause significantly enhanced migration and robust scratch wound healing kinetics, as compared to cells harbouring only the normal copy of the gene. These data therefore present convincing evidence that the Gβ3s subunit is stable, functional and its presence can significantly alter signalling pathways, in different cell types

    The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys

    Get PDF
    The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Valley, Beacon Valley and Battleship Promontory. The bacterial communities of these four Dry Valleys have been examined previously, and the results suggested that the extremely localized bacterial diversities are likely driven by the disparate physicochemical conditions associated with these locations. Here we showed that AOB and AOA amoA gene diversity was generally low; only four AOA and three AOB operational taxonomic units (OTUs) were identified from a total of 420 AOA and AOB amoA clones. Quantitative PCR analysis of amoA genes revealed clear differences in the relative abundances of AOA and AOB amoA genes among samples from the four dry valleys. Although AOB amoA gene dominated the ammonia-oxidizing community in soils from Miers Valley and Battleship Promontory, AOA amoA gene were more abundant in samples from Upper Wright and Beacon Valleys, where the environmental conditions are considerably harsher (e.g., extremely low soil C/N ratios and much higher soil electrical conductivity). Correlations between environmental variables and amoA genes copy numbers, as examined by redundancy analysis (RDA), revealed that higher AOA/AOB ratios were closely related to soils with high salts and Cu contents and low pH. Our findings hint at a dichotomized distribution of AOA and AOB within the Dry Valleys, potentially driven by environmental constraints

    The distribution of ammonia-oxidizing betaproteobacteria in stands of Black mangroves (Avicennia germinans)

    Get PDF
    The distribution of species of aerobic chemolitho-autotrophic microorganisms such as ammonia-oxidizing bacteria are governed by pH, salinity, and temperature as well as the availability of oxygen, ammonium, carbon dioxide, and other inorganic elements required for growth. Impounded mangrove forests in the Indian River Lagoon, a coastal estuary on the east coast of Florida, are dominated by mangroves, especially stands of Black mangrove (Avicennia germinans) that differ in the size and density of individual plants. In March 2009, the management of one impoundment was changed to a regime of pumping estuarine water into the impoundment at critical times of the year to eliminate breeding sites for noxious insects. We collected soil samples in three different Black mangrove habitats before and after the change in management to determine the impacts of the altered hydrologic regimes on the distribution of 16s rRNA genes belonging to ammonia-oxidizing betaproteobacteria (β-AOB). We also sampled soils in an adjacent impoundment in which there had not been any hydrologic alteration. At the level of 97% mutual similarity in the 16s rRNA gene, 13 different operational taxonomic units were identified; the majority related to the lineages of Nitrosomonas marina (45% of the total clones), Nitrosomonas sp. Nm143 (23%), and Nitrosospira cluster 1 (19%). Long-term summer flooding of the impoundment in 2009, after initiation of the pumping regime, reduced the percentage of N. marina by half between 2008 and 2010 in favor of the two other major lineages and the potential ammonia-oxidizing activity decreased by an average of 73%. Higher interstitial salinities, probably due to a prolonged winter drought, had a significant effect on the composition of the β-AOB in March 2009 compared to March 2008: Nitrosomonas sp. Nm143 was replaced by Nitrosospira cluster 1 as the second most important lineage. There were small, but significant differences in the bacterial communities between the flooded and non-flooded impoundments. There were also differences in the community composition of the bacteria in the three Black mangrove habitats. N. marina was most dominant in all three habitats, but was partly replaced by Nitrosospira cluster 1 in sites dominated by sparsely distributed trees and by Nitrosomonas sp. Nm143 in sites characterized by taller, more densely distributed Black mangrove trees.

    Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2

    Get PDF
    Deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) in humans leads to the syndrome of apparent mineralocorticoid excess (SAME), in which cortisol illicitly occupies mineralocorticoid receptors, causing sodium retention, hypokalemia, and hypertension. However, the disorder is usually incompletely corrected by suppression of cortisol, suggesting additional and irreversible changes, perhaps in the kidney. To examine this further, we produced mice with targeted disruption of the 11β-HSD2 gene. Homozygous mutant mice (11β-HSD2(–/–)) appear normal at birth, but ∼50% show motor weakness and die within 48 hours. Both male and female survivors are fertile but exhibit hypokalemia, hypotonic polyuria, and apparent mineralocorticoid activity of corticosterone. Young adult 11β-HSD2(–/–) mice are markedly hypertensive, with a mean arterial blood pressure of 146 ± 2 mmHg, compared with 121 ± 2 mmHg in wild-type controls and 114 ± 4 mmHg in heterozygotes. The epithelium of the distal tubule of the nephron shows striking hypertrophy and hyperplasia. These histological changes do not readily reverse with mineralocorticoid receptor antagonism in adulthood. Thus, 11β-HSD2(–/–) mice demonstrate the major features of SAME, providing a unique rodent model to study the molecular mechanisms of kidney resetting leading to hypertension. J. Clin. Invest. 103:683–689 (1999
    corecore