4 research outputs found

    Development of a Nanoscale-Sensitive DNA Sensor using Functionalized Graphene Substrates and Fluorescence Lifetime Characterization

    Get PDF
    Fluorescence Lifetime Image Microscopy (FLIM) of nanostructured graphene substrates was used to measure the recently observed nanoscale distance-scaling of the fluorescence lifetime of dyes located in the vicinity of graphene sheets, at distances up to about 30 nm. The results were compared with a Resonant Energy Transfer (RET) theoretical model and used to establish an experimental fluorescence lifetime-to-nanoscale distance conversion function. In the following, this nano-optical relation was used for the design of a Deoxyribonucleic Acid (DNA) biosensor. Graphene was functionalized with fluorescently labeled DNA molecular beacons that unfold during hybridization with complementary DNA, and thereby change the distance of the fluorescent dye from the graphene surface. The spatial distribution of DNA molecular beacons binding to the surface of a graphene flake was studied, as well as the temporal kinetics of the hybridization reaction using time-lapse FLIM measurements. The results showed a vertical ascent of a fluorescent label relative to the graphene surface with a distance extension that is in accordance with the expected molecular length of the specific DNA sequence used. Interestingly, an intermediate state associated to a distance of a few nanometers was identified with a lifespan of about 85 minutes. The developed graphene-based DNA sensor was shown to enable optical detection of nanoscale distances in liquid media. These findings indicate that the fluorescence lifetime-based detection coupled with nanoscale interaction effects may find applications in various biosensing applications such as health and food-quality tracing. For the processing of FLIM data, several fluorescence lifetime calculation algorithms were compared and integrated into a specially designed and implemented analysis software toolbox in MATLAB.Imagens de Microscopia de Tempo de Vida de Fluorescência (FLIM) de substratos de grafeno nano-estruturados foram usadas para a medição da recentemente observada alteração do tempo de vida de fluorescência de corantes quando localizados na vizinhança de grafeno para distâncias até cerca de 30 nm. Os resultados foram comparados com um modelo teórico de Transferência Ressonante de Energia (RET) e utilizados para o estabelecimento de uma função de calibração experimental entre tempo de vida de fluorescência e distâncias à nano-escala. Posteriormente, esta relação nano-ótica foi utilizada para o desenvolvimento de um biossensor de Ácido Desoxirribonucleico (ADN). Substratos de grafeno foram funcionalizados com sinais moleculares (molecular beacons) de ADN que se desdobram durante a hibridização com ADN complementar, alterando a distância do corante fluorescente à superfície de grafeno. A distribuição espacial da ligação de sinais moleculares de ADN à superfície do grafeno foi estudada, bem como a cinética de reação de hibridização, usando medições de FLIM por lapso de tempo. Os resultados mostraram a ascensão vertical dos marcadores fluorescentes relativamente à superfície, com uma deslocamento total que está de acordo com o comprimento molecular esperado para a sequência de ADN utilizada. Curiosamente, um estado intermedio associado a uma distância de alguns nanómetros foi identificado, tendo este uma duração de cerca de 85 minutos. Foi então demonstrado que o sensor de ADN desenvolvido permite a deteção ótica de distâncias à nano-escala em meio líquido. Estes resultados indicaram que a deteção baseada em tempo de vida de fluorescência, acoplada aos efeitos desta interação ótica à nano-escala pode ser utilizada em várias aplicações de biodeteção, tal como na saúde e no rastreamento da qualidade alimentar. Para o tratamento de dados de FLIM, vários algoritmos de cálculo de tempo de vida foram comparados e integrados num programa de análise especificamente desenhado e implementado para o efeito, em ambiente MATLAB.International Iberian Nanotechnology Laboratory – IN

    On Heteroaromaticity Of Nucleobases. Bond Lengths As Multidimensional Phenomena

    No full text
    Three hundred and nine carbon-carbon, carbon-nitrogen, and carbon-oxygen w-bond lengths in high precision crystal structures of 31 purine and pyrimidine nucleobases were related to the Pauling w-bond order, its analogues corrected to crystal packing effects, the numbers of non-hydrogen atoms around the bond, and the sum of atomic numbers of the bond atoms. Principal Component Analysis (PCA) and Hierachical Cluster Analysis (HCA) demonstrated that the bond lengths in the nucleobases are three-dimensional phenomenon, characterized by nine distinct classes of bonds. Bond lengths predicted by Linear Regression models, Pauling Harmonic Potential Curves, Multiple Linear Regression, Principal Component, and Partial Least Squares Regression were compared to those calculated by molecular mechanics, semiempirical, and ab initio methods using PCA-HCA procedure on the calculated bond lengths, statistical parameters, and structural aromaticity indices. Incorporation of crystal packing effects into bond orders makes multivariate models to be competitive to semiempirical results, while further improvement of quantum chemical calculations can be achieved by geometry optimization of molecular clusters.433787809Hurst, D.T., (1980) An Introduction to the Chemistry and Biochemistry of Pyrimidines, Purines and Pteridines, p. 104. , Wiley: Chichester. UKChaudhuri, N.C., Ren, R.X.-F., Kool, E.T., C-nucleosides derived from simple aromatic hydrocarbons (1997) Synlett, pp. 341-347Saenger, W., (1984) Principles of Nucleic Acid Structure, , Springer: New YorkBarciszewski, J., Barciszewska, M.Z., Siboska, G., Rattan, S.I.S., Clark, B.F.C., Some unusual nucleic acid bases are products of hydroxyl radical oxidation of DNA and RNA (1999) Mol. Biol. Rep., 26, pp. 231-238Ray, A., Norden, B., Peptide nucleic acid (PNA): Its medical and biotechnical applications and promise for the future (2000) Faseb J., 14, pp. 1041-1060Barnes T.W. III, Turner, D.H., Long-range cooperativity in molecular recognition of RNA by oligodeoxynucleotides with multiple C5(1-propynyl) pyrimidines (2001) J. Am. Chem. Soc., 123, pp. 4107-4118Matulic-Adamic, J., Beigelman, L., Portmann, S., Egli, M., Usman, N., Synthesis and structure of l-deoxy-l-phenyl-β-d-ribofuranose and its incorporation into oligonucleotides (1996) J. Org. Chem., 61, pp. 3909-3911Ren, R.X.-F., Chaudhuri, N.C., Paris, P.L., Rumney S. IV, Kool, E.T., Naphthalene, phenanthrene, and pyrene as DNA base analogues: Synthesis, structure, and fluorescence in DNA (1996) J. Am. Chem. Soc., 118, pp. 7671-7678Guckian, K.M., Krugh, T.R., Kool, E.T., Solution structure of a nonpolar, non-hydrogen-bonded base pair surrogate in DNA (2000) J. Am. Chem. Soc., 722, pp. 6841-6847Schwogler, A., Carell, T., Toward catalytically active oligonucleotides: Synthesis of a flavin nucleotide and its incorporation into DNA (2000) Org. Lett., 2, pp. 1415-1418Clowney, L., Jain, S.C., Srinivasan, A.R., Westbrook, J., Olson, W.K., Berman, H.M., Geometric parameters in nucleic acids: Nitrogenous bases (1996) J. Am. Chem. Soc., 118, pp. 509-518Berman, H.M., Olson, W.K., Beveridge, D.L., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S.H., Schneider, B., The nucleic-acid database: A comprehensive relational database of 3-dimensional structures of nucleic-acids (2000) Biophys. J., 63, pp. 751-759. , http://ndbserver.rutgers.edu/structure-finder/ndb/, Website: The Nucleic Acid Database. The Nucleic Acid Database Project. Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 1995-2001The NMR-nucleic acid database (1995) The Nucleic Acid Database Project, , http://ndbserver.rutgers.edu/structure-finder/nmr/, Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJThe DNA-binding protein database (1995) The Nucleic Acid Database Project, , http://ndbserver.rutgers.edu/structure-finder/dnabind/, Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJBerman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank (2000) Nucleic Acids Res., 28, pp. 235-242. , http://www.rcsb.org/pdb/, Website: PDB - Protein Data Bank: Rutgers, the State University of New Jerseythe San Diego Supercomputer Center at the University of California, San Diegothe National Institute of Standards and Technologyand the University of Wisconsin-MadisonAlen, F.H., Kennard, O., 3D search and research using the Cambridge structural database (1993) Chem. Design Autom. News, 8, pp. 31-37. , http://www.ccdc.cam.ac.uk/prods/csd/osd.html, Website: The Cambridge Structural Database. University of Cambridge, Cambridge, UKGuckian, K.M., Schweitzer, B.A., Ren, R.X.-F., Sheils, C.J., Paris, P.L., Tahmassebi, D.C., Kook, E.T., Experimental measurement of aromatic stacking affinities in the context of duplex DNA (1996) J. Am. Chem. Soc., 118, pp. 8182-8183Guckian, K.M., Schweitzer, B.A., Ren, R.X.-F., Sheils, C.J., Paris, P.L., Tahmassebi, D.C., Kook, E.T., Factors contributing to aromatic stacking in water: Evaluation in the context of DNA (2000) J. Am. Chem. Soc., 118, pp. 2213-2222Voet, D., Voet, J.G., (1995) Biochemistry, 2nd Ed., p. 868. , J. Wiley: New YorkLemieux, S., Oldziej, S., Major, F., Nucleic acids: Qualitative modeling (1998) Encyclopedia of Computational Chemistry, 3, pp. 1930-1941. , von Ragué Schleyer, P., Ed.Wiley: Chichester, UKVan der Waals Volumes Bondi, A., Radii, (1964) J. Phys. Chem., 65, pp. 441-451Burgi, H.B., Structure correlation and chemistry (1998) Acta Crystallogr., A54, pp. 873-885Von Ragué Schleyer, P., Jiao, H., What is aromaticity? (1996) Pure Appl. Chem., 68, pp. 209-218Lewis, D., Peters, D., (1975) Facts and Theories of Aromaticity, 1st Ed., pp. 10-14. , MacMillan Press: LondonBird, C.W., Heteroaromaticity. 13. Bond alternation and its consequences for conjugation energies and other criteria of aromaticity (1998) Tetrahedron, 54, pp. 4641-4646Cramer, C.J., Hyperconjugation (1998) Encyclopedia of Computational Chemistry, 2, pp. 1294-1298. , von Ragué Schleyer, P., Ed.Wiley: Chichester, UKPauling, L., (1972) The Nature of the Chemical Bond, 3rd Ed., , Cornell University Press: Ithaca, NYWhealand, G.W., (1953) The Theory of Resonance, , Wiley: New YorkPauling, L., Bond numbers and bond lengths in tetrabenzo [de, no, st, c1d1]heptacene and other condensed aromatic hydrocarbons: A valence-bond treatment (1980) Acta Crystallogr, B36, pp. 1898-1901Herndon, W.C., Párkányi, C., π bond orders and bond lengths (1976) J. Chem. Educ., 53, pp. 689-691Kiralj, R., Kojić-Prodić, B., Žinić, M., Alihodžić, S., Trinajstić, N., Bond length-bond order relationships and calculated geometries for some benzenoid aromatics, including phenanthridine. Structure of 5,6-dimethylphenanthridinium triflate, [N-(6-Phenanthridinyl-methyl)-aza-18-crown-6-κ5O,O′,O ″,O‴,O″″](picrate-κ2O,O′)potassi um, and [N,N′-Bis(6-phenanthridinyl-κN-methyl)-7 (1996) Acta Crystallogr., B52, pp. 823-837Kiralj, R., Kojić-Prodić, B., Nikolić, S., Trinajstić, N., Bond lengths and bond orders in benzenoid hydrocarbons and related systems: A comparison of valence bond and molecular orbital treatments (1998) J. Mol. Struct. (THEOCHEM), 427, pp. 25-37. , and the references thereinKiralj, R., Kojić-Prodić, B., Piantanida, I., Žinić, M., Crystal and molecular structures of diazapyrenes and a study of π...π interactions (1999) Acta Crystallogr., B55, pp. 55-69Stoicheff, B.P., Variation of carbon-carbon bond lengths with environment as determined by spectroscopic studies of simple polyatomic molecules (1962) Tetrahedron, 17, pp. 135-145Kiralj, R., (1994) Structural Investigations of Macrocyclic Receptors with Phenanthridine Subunits, , Master Thesis, University of Zagreb, Zagreb, CroatiaKrygowski, T.M., Anulewicz, R., Kruszewski, J., Crystallographic studies and physicochemical properties of π-electron compounds. III. Stabilization energy and the kekulé structure contributions derived from experimental bond lengths (1983) Acta Crystallogr., B39, pp. 732-739Kiralj, R., (1999) Structural Studies of 4,9-Diazapyrene Derivatives, , Doctoral Thesis, University of Zagreb, Zagreb, CroatiaKiralj, R., Ferreira, M.M.C., Predicting bond lengths in planar benzenoid polycyclic aromatic hydrocarbons: A chemometric approach (2002) J. Chem. Inf. Comput. Sci., 42, pp. 508-523Beebe, K.R., Pell, R.J., Seasholtz, M.B., (1998) Chemometrics: A Practical Guide, , Wiley: New YorkBeebe, K.R., Kowalski, B.P., An introduction to multivariate calibration and analysis (1987) Anal. Chem., 59, pp. 1007A-1017ASchleyer, P.R., Freeman, P.K., Jiao, H., Goldfuss, B., Aromaticity and antiaromaticity in five-membered c4h4x ring systems: "Classical" and "magnetic" concepts may not be "orthogonal" (1995) Angew. Chem., Int. Ed. Engl., 34, pp. 337-340Lewis, D., Peters, D., (1975) Facts and Theories of Aromaticity, 1st Ed., pp. 10-14. , The MacMillan Press Ltd.: LondonClowney, L., Westbrook, J.D., Berman, H.M., CIF applications. XI. A la mode: A ligand and monomer object data environment. I. Automated construction of mmCIF monomer and ligand models (1999) J. Appl. Crystallogr., 32, pp. 125-133. , http://ndbserver.rutgers.edu/alamode/index.html, See the Internet update of the nucleic acid standards at the following: A la mode: A Ligand And Monomer Object Data Environment. The Nucleic Acid Database. The Nucleic Acid Database Project. Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 1995-2001. [last accessed on 30 June 2001](2001) Cambridge Structural Database, , http://chemviz.ncsa.uiuc.edu, October Release. The Chemistry Visualization Program (NCSA Chem Viz) at the National Center for Supercomputing Applications, University of Illinois at Urbana-ChampaignSpek, A.L., (2000) PLATON, A Multipurpose Crystallographic Tool, V. 31000, , http://www.cryst.chem.uu.nl/platon/, Utrecht University: Utrecht, The NetherlandsLide, D.R., (1993) CRC Handbook of Chemistry and Physics, 74th Ed., , Ed.CRC Press: Boca Raton, FLSection 9(2000) Titan, 1. , Wavefunction, Inc.: Irvine, CAKiralj, R., Ferreira, M.M.C., A priori molecular descriptors in QSAR: A case of HIV-1 protease inhibitors. II. Molecular graphics and modeling J. Mol. Graph. Mod., , in pressAllen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., Taylor, R., Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds (1987) J. Chem. Soc., Perkin Trans. 2, 2, pp. S1-S19Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz K.M., Jr., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., A second generation force fields for the simulation of protein, nucleic acids, and organic molecules (1995) J. Am. Chem. Soc., 117, pp. 5179-5197Dewar, M.J.S., Gleicher, G.J., Ground states of conjugated molecules. VII. Compounds containing nitrogen and oxygen (1966) J. Chem. Phys., 44, pp. 759-773Cieplak, P., Nucleic acid force fields (1998) Encyclopedia of Computational Chemistry, 3, pp. 1922-1930. , von Ragué Schleyer, P., Ed.Wiley: Chichester. UKHobza, P., Kabelac, M., Sponer, J., Mejzlik, P., Vondrasek, J., Performance of empirical potentials (AMBER, CFF95, CBF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AMI, MNDO/M, PM3), and Ab initio hartree-fock method for interaction of DNA bases: Comparison with nonempirical beyond hartree-fock results (1997) J. Comput. Chem., 18, pp. 1136-1150Bludsky, O., Sponer, J., Leszczynski, J., Spirko, V., Hobza, P., Amino groups in nucleic acid bases, aniline, aminopyridines, and aminotriazines are nonplanar: Results of correlated ab initio quantum chemical calculations and anharmonic analysis of the aniline inversion calculation (1996) J. Chem. Phys., 105, pp. 11042-11050Kiralj, R., (1998) RESON. A Program for Determination of Weights of Kekulé Structures by the Method of Krygowski, , Rudjer Boskovic Institute: Zagreb, CroatiaHalgren, T.A., Merck molecular force field. 1. Basis, form, scope, parametrization, and performance of MMFF94 (1996) J. Comput. Chem., 17, pp. 490-519Dewar, M.J.S., Thiel, W., Ground-states of molecules. 38. MNDO method: Approximations and parameters (1977) J. Am. Chem. Soc., 99, pp. 4899-4907Dewar, M.J.S., Zoebisch, E.G., Healy, G.F., Stewart, J.J.P., The development and use of quantum-mechanical molecular models. 76. AMI: A new general-purpose quantum-mechanical molecular model (1985) J. Am. Chem. Soc., 107, pp. 3902-3909Stewart, J.J.P., Optimization of parameters for semiempirical methods. 1. Methods (1989) J. Comput. Chem., 10, pp. 209-220Allen, F.H., Motherwell, W.D.S., Applications of the Cambridge structural database in organic chemistry and crystal chemistry (2002) Acta Crystallogr., B58, pp. 407-422Bobadova-Parvanova, P., Galabov, B., Ab initio molecular-orbital study on hydrogen-bonded complexes of carbonyl aliphatic compounds and hydrogen fluoride (1998) J. Phys. Chem., A102, pp. 1815-1819Kiralj, R., Ferreira, M.M.C., A combined computational and chemometric study of indole-3-acetic acid Int. J. Quantum Chem., , submitted for publicationKiralj, R., Ferreira, M.M.C., (2001) A Molecular and Quantum Mechanical Study of Indole-3-Acetic Acid. XI Simpósio Brasileiro de Química Teórica, , Caxambu, MG, Brazil, 18-21 November. Poster P302Bertolasi, V., Gilli, P., Ferreti, V., Gilli, G., Intermolecular N-H⋯O hydrogen bonds assisted by resonance. Heteroconjugated systems as hydrogen-bond-strengthening functional groups (1995) Acta Crystallogr., B51, pp. 1004-1015Taylor, R., Kennard, O., Accuracy of crystal structure error estimates (1986) Acta Crystallogr., B42, pp. 112-120Allen, F.H., A systematic pairwise comparison of geometric parameters obtained by x-ray and neutron diffraction (1986) Acta Crystallogr., B42, pp. 515-522Pauling, L., Atomic radii and interatomic distances in metals (1947) J. Am. Chem. Soc., 69, pp. 542-553Gordy, W., Dependence of bond order and of bond energy upon bond length (1947) J. Chem. Phys., 75, pp. 305-310Pirouette 3.01. Infometrix, Inc.Seattle: WA, 2001Matlab 6.1. Math Works, Inc.Natick, MA, 2001Ferreira, M.M.C., Montanari, C.A., Gaudio, A.C., Variable selection in QSAR (2002) Quím. Nova, 25, pp. 439-448Ferreira, M.M.C., Antunes, A.M., Melgo, M.S., Volpe, P.L.O., Chemometrics I: Multivariate calibration, a tutorial (1999) Quím. Nova, 22, pp. 724-731Kubinyi, H., Evolutionary variable selection in regression and PLS analyses (1996) J Chemometrics, 10, pp. 119-133Cho, S.J., The QSAR Server: Partial Least Squares (PLS), , http://mmlinl.pha.unc.edu/~jin/QSAR/PLS/pls.html, Laboratory for Molecular Modeling, School of Pharmacy, University of North Carolina, Chapel Hill, NC [last accessed on 23 July 2002]Ferreira, M.M.C., Kiralj, R., Chemomeric and QSPR analysis of a set of hydropathy scales (2002) 24a Reunião Anual da Sociedade Brasileira de Química, , Poços de Caldas, MG, Brazil, 20-23 May. Poster QT040Krygowski, T.M., Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems (1993) J. Chem. Inf. Comput. Sci., 33, pp. 70-78Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (2001) Gaussian 98 - Revision A.11, , Gaussian, Inc., Pittsburgh, PAKielkopf, C.L., Ding, S., Kuhn, P., Rees, D.C., Conformational flexibility of B-DNA at 0.74 Å resolution: d(CCAGTACTGG)2 (2000) J. Mol. Biil., 296, pp. 787-801Glusker, J.P., Lewis, M., Rossi, M., (1994) Crystal Structure Analysis for Chemists and Biologists, pp. 429-431. , VCH Publishers: New YorkTrinajstic, N., (1992) Chemical Graph Theory, 2nd Ed., , CRC Press: Boca Raton, FLGavezzotti, A., Are crystal structures predictable? (1994) Acc. Chem. Res., 27, pp. 309-314Slowikowska, J.M., Wozniak, K., Influence of hydrogen bonding on the geometry of the adenine fragment (1996) J. Mol. Struct.-Theochem, 374, pp. 327-33

    Organophosphorus Chemistry 2018

    Get PDF
    Organophosphorus chemistry is an important discipline within organic chemistry. Phosphorus compounds, such as phosphines, trialkyl phosphites, phosphine oxides (chalcogenides), phosphonates, phosphinates and >P(O)H species, etc., may be important starting materials or intermediates in syntheses. Let us mention the Wittig reaction and the related transformations, the Arbuzov- and the Pudovik reactions, the Kabachnik–Fields condensation, the Hirao reaction, the Mitsunobu reaction, etc. Other reactions, e.g., homogeneous catalytic transformations or C-C coupling reactions involve P-ligands in transition metal (Pt, Pd, etc.) complex catalysts. The synthesis of chiral organophosphorus compounds means a continuous challenge. Methods have been elaborated for the resolution of tertiary phosphine oxides and for stereoselective organophosphorus transformations. P-heterocyclic compounds, including aromatic and bridged derivatives, P-functionalized macrocycles, dendrimers and low coordinated P-fragments, are also of interest. An important segment of organophosphorus chemistry is the pool of biologically-active compounds that are searched and used as drugs, or as plant-protecting agents. The natural analogue of P-compounds may also be mentioned. Many new phosphine oxides, phosphinates, phosphonates and phosphoric esters have been described, which may find application on a broad scale. Phase transfer catalysis, ionic liquids and detergents also have connections to phosphorus chemistry. Green chemical aspects of organophosphorus chemistry (e.g., microwave-assisted syntheses, solvent-free accomplishments, optimizations, and atom-efficient syntheses) represent a dynamically developing field. Last, but not least, theoretical approaches and computational chemistry are also a strong sub-discipline within organophosphorus chemistry

    Conformational Study Of (8α,8′β)-bis(substituted Phenyl)-lignano-9,9'-lactones By Means Of Combined Computational, Database Mining, Nmr, And Chemometric Approaches

    No full text
    β-(3,4-Methylenedioxybenzyl)-γ-butyrolactone (MDBL) and (-)-hinokinin (HK) were obtained by partial synthesis and characterized by 1H NMR and computational methods (conformational analysis, molecular modeling, structural data mining and chemometrics). Three conformers were detected for MDBL and nine were found for HK. The energy differences are around 1 and 2 kcal mol-1 and rotation barriers are less than 3 and 5 kcal mol-1 for MDBL and HK conformers, respectively. The geometries of these conformers, obtained from semiempirical PM3 and density functional theory (DFT) B3LYP 6-3IG** calculations agree satisfactorily with 1H NMR data (vicinal proton-proton coupling constants) and structures retrieved from the Cambridge Structural Database (torsion angles). DFT combined with some variants of the Haasnoot-de Leeuuw-Altona equations gives the best predictions for the coupling constants. The molecular conformation of MDBL, of HK, and of related systems depends not only on intramolecular interactions but also on crystal packing forces and solvent-solute interactions, in particular hydrogen bonds and polar interactions. Hydration favors more stable HK conformers, which can be important for their behavior in chemical and biological systems. © 2007 American Chemical Society.1112863166333McRae, W.D., Towers, G.H.N., Biological Activities of Lignans (1984) Phytochemistry, 23, pp. 1207-1220Ayres, D.C., Loike, J.D., (1990) Chemistry and Pharmacology of Natural Products: LignansChemical, Biological and Clinical Properties, , Cambridge University Press: New YorkWard, R.S., Lignans, Neolignans, and Related Compounds (1993) Nat. Prod. Rep, 10, pp. 1-28Ward, R.S., Lignans, Neolignans, and Related Compounds (1995) Nat. Prod. Rep, 12, pp. 183-205Ward, R.S., Lignans, Neolignans, and Related Compounds (1997) Nat. Prod.-Rep, 14, pp. 43-74Ward, R.S., Lignans, Neolignans, and Related Compounds (1999) Nat. Prod. Rep, 16, pp. 75-96Mann, J., Davidson, R.S., Hobbs, J.B., Banthorpe, D.V., Harborne, J.B., (1994) Natural Products: Their Chemistry and Biological Significance, , Longman: Essex, U.KBastos, J.K., Albuquerque, S., Silva, M.L.A., Evaluation of the trypanocidal activity of lignans isolated from the leaves of Zanthoxylum naranjillo (1999) Planta Med, 65, pp. 541-544Moss, G.P., Nomenclature of Lignans and Neolignans (IUPAC Recommendations 2000) (2000) Pure Appl. Chem, 72, pp. 1493-1523Bruno, I.J., Cole, J.C., Kessler, M., Luo, J., Motherwell, W.D.S., Purkis, L.H., Smith, B.R., Taylor, R., Retrieval of Crystallographically- Derived Molecular Geometry Information (2004) J. Chem. Inf. Comput. Sci, 44, pp. 2133-2144Allen, F.H., Harris, S.E., Taylor, R., Comparison of conformer distributions in the crystalline state with conformational energies calculated by ab initio techniques (1996) J. Comput.-Aided Mol. Des, 10, pp. 247-254Boehm, H.-J., Klebe, G., What can we learn from molecular recognition in protein-ligand complexes for the design of new drugs? (1996) Angew. Chem., Int. Ed. Engl, 35, pp. 2588-2614Bürgi, H.B., Structure Correlation and Chemistry (1998) Acta Crystallogr. A, 54, pp. 873-885Allen, F.H., The Development, Status and Scientific Impact of Crystallographical Databases (1998) Acta Crystallogr. A, 54, pp. 758-771Raithby, P. R.Shields, G. P.Allen, F. H. Conformational Analysis of Macrocyclic Ether Ligands. II. 1,4,7,10,13-Pentaoxacyclopentadecane and 1,4,7,10,13-Pentathiacyclopentadecane. Acta Crystallogr. B 1997, 53, 476-489Munro, O.Q., Mariah, L., Conformational analysis: Crystallographic, molecular mechanics and quantum chemical studies of C-H⋯ •O hydrogen bonding in flexible bis(nosylate) derivatives of catechol (2004) Acta Crystallogr. B, 60, pp. 598-608Balaceo, G.A., Desktop Calculator for the Karplus Equation (1996) J. Chem. Inf. Comput. Sci, 36, pp. 885-887Larue, L., Gharbi-Benarous, J., Archer, F., Azerad, R., Girault, J.-P., Conformational study in water by NMR and Molecular Modeling of Cyclic Glutamic Acid Analogues as Probes of Vitamin K Dependent Carboxylase (1996) J. Chem. Inf. Comput. Sci, 36, pp. 717-725Grdadolnik, S. G.Trebše, P.Kočevar, M.Solmajer, T. Structural Investigation of 5-Hydrazxono-5,6,7,8-tetrahydro-2/7-1 -benzopyran-2-ones and 5,6,7,8-Tetrahydroquinoline-2,5(1H)-diones. J. Chem. Inf. Comput. Sci. 1997, 37, 489-494Navarro-Vázquez, A.Cobas, J. C.Sardina, F. C. A Graphical Tool for the Prediction of Vicinal Proton-Proton 3JHH Coupling Constants. J. Chem. Inf. Comput. Sci. 2004, 44, 1680-1685Allen, F.H., The Cambridge Structural Database: A quarter of a million crystal structures and rising (2002) Acta Crystallogr. B, 58, pp. 380-388Fey, N., Harris, S.E., Harvey, J.N., Orpen, A.G., Adding Value to Crystallographically-Derived Knowledge Bases (2006) J. Chem. Inf. Comput. Sci, 46, pp. 912-929Kiralj, R., Ferreira, M.M.C., Predicting Bond Lengths in Planar Benzenoid Polycyclic Aromatic Hydrocarbons: A Chemometric Approach (2002) J. Chem. Inf. Comput. Sci, 42, pp. 508-523Kiralj, R., Ferrreira, M.M.C., On Heteroaromaticity of Nucleobases. Bond Lengths as Multidimensional Phenomena (2003) J. Chem. Inf. Comput. Sci, 43, pp. 787-809Krygowski, T.M., Crystallographic Studies of Inter- and Intramolecular Interactions Reflected in Aromatic Character of π-Electron Systems (1993) J. Chem. Inf. Comput. Sci, 33, pp. 70-78Harris, P.E., Orpen, A.G., Bruno, I.J., Taylor, R., Factors Affecting d-Block Metal-Ligand Bond Lengths: Toward an Automated Library of Molecular Geometry for Metal Complexes (2005) J. Chem. Inf. Mod, 45, pp. 1727-1748Kämper, A., Apostolakis, J., Rarey, M., Marian, C.M., Lengauer, T., Fully Automated Flexible Docking of Ligands into Flexible Synthetic Receptor Using Forward and Inverse Docking Strategies (2006) J. Chem. Inf. Mod, 46, pp. 903-911Klebe, G., Mietzner, T., A fast and efficient method to generate biologically relevant conformations (1994) J. Comput.-Aided Mol. Des, 8, pp. 583-606Feuston, M.P., Miller, M.D., Culberson, J.C., Nachbar, R.B., Kearsley, S.K., Comparison of Knowledge-Based and Distance Geometry Approaches for Generation of Molecular Conformations (2001) J. Chem. Inf. Comput. Sci, 41, pp. 754-763Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R., Development of validation of a genetic algorithm for flexible docking (1997) J. Mol. Biol, 267, pp. 727-748Rarey, M., Kramer, B., Lengauer, T., Klebe, G., A fast flexible docking method using an incremental construction algorithm (1996) J. Mol. Biol, 261, pp. 470-489Lemmen, C., Lengauer, T., Time-efficient flexible superposition of medium-sized molecules (1997) J. Comput.-Aided Mol. Des, 11, pp. 357-368Stewart, J.J.P., Optimization of Parameters for Semiempirical Methods. 1. Methods (1989) J. Comput. Chem, 10, pp. 209-220Ziegler, T., Approximate Density Functional Theory as a Practical Tool In Molecular Energetics and Dynamics (1991) Chem. Rev, 91, pp. 651-667Becke, A.D., Density-Functional Thermochemistry. 3. The Role of Exact Exchange (1993) J. Chem. Phys, 98, pp. 5648-5652Lee, C.T., Yang, W.T., Parr, R.G., Development of the ColleSalvetti Correlation-Energy Formula Into A Functional Of The Electron Density (1988) Phys. Rev. B, 37, pp. 785-789(2001) Titan 1.0.8, , Wavefunction, Inc, Irvine, CA(2000) WebLab ViewerPro 4.0, , Accelrys, Inc, Burlington, MA(2000) Chem3D Ultra 6.0, , CambridgeSoft.Com: Cambridge, MA(2001) Pirouette 3.01, , Infometrix, Inc, Woodinville, WAMatlab version 6.5.0.196271 Release 13.01. Mathworks, Inc, Natick, MA, 2003January, Update of the (2005) Cambridge Structural Database 5.27, , Cambridge Structural Data Centre, University of Cambridge: Cambridge, U.K, NovemberBruno, I.J., Cole, J.C., Edgington, P.R., Kessler, M., Macrae, C.F., McCabe, P., Pearson, J., Taylor, R., New software for searching the Cambridge Structural Database and visualizing crystal structures (2002) Acta Crystallogr. B, 58, pp. 389-397ConQuest 1.8: Camridge Structural Data Centre. University of Cambridge: Cambridge. U.K., 2005Mercury 1.4.1: Cambridge Structural Data Centre, University of Cambridge: Cambridge. U.K., 2005Vista 2.1cCambridge Structural Data Centre. University of Cambridge: Cambridge, U.K., 2005Spek, T., PLATON-A Multipurpose Crystallography Tool (1990) Acta Crystallogr. A, 46, pp. C34Farrugia, L.J., (2005) Platon for Windows, , University of GlasgowMartens, H., Naes, T., (1989) Multivariate Calibration, , 2nd ed, Wiley: New York, NYBeebe, K.R., Pell, R., Sheasholtz, M.B., (1998) Chemometries: A practical guide, , Wiley: New YorkFerreira, M.M.C., Multivariate QSAR (2002) J. Braz. Chem. Soc, 13, pp. 742-753Drew, M.G.B., Harrison, R.J., Mann, J., Tench, A.J., Young, R.J., Photoinduced addition of methanol to 5(S)-5-triisopropylsiloxymethyl-N-boc- dihydropyrrole-2(5H)-one: A new route to 4(S), 5(S)-disubstituted pyrrolidin-2-ones (1999) Tetrahedron, 55, pp. 1163-1172Kuehne, M.E., Bornmann, W.G., Parsons, W.H., Spitzer, T.D., Blount, J.F., Zubieta, J., Total syntheses of (±)-cephalotaxine and (±)-8-oxocephalotaxine (1988) J. Org. Chem, 53, pp. 3439-3450Syu Jr., W., Don, M.-J., Lee, G.-H., Sun, C.-M., Cytotoxic and Novel Compounds from Solanum indicum (2001) J. Nat. Prod, 64, pp. 1232-1233Cremer, D., Pople, J.A., General definition of ring puckering coordinates (1975) J. Am. Chem. Soc, 97, pp. 1354-1358Kiralj, R., Ferreira, M.M.C., Combined Computational and Chemometric Study of 1H-Indole-3-Acetic Acid (2003) Int. J. Quantum Chem, 95, pp. 237-251Silva, M.C., Kiralj, R., Ferreira, M.M.C., Estudo Teórico da Interação Existente Entre a Artemisinina e Heme (2007) Quim. Nova, 30, pp. 25-31Stenutz, R., Program for Calculation of Vicinal proton-proton coupling constants, , http://www.spectroscopynow.com/FCKeditor/UserFiles/ File/specNOW/HTML%20files/proton-proton2.htm, last accessed on 21 March, 2007Haasnoot, C.A.G., DeLeeuw, F.A.A.M., Altona, C., The relationship between proton-proton NMR coupling constants and substituent' electronegativities. 1. An empirical generalization of the Karplus equation (1980) Tetrahedron, 36, pp. 2783-2792Altona, C., Vicinal Coupling Constants & Conformation of Biomolecules (1996) Encyclopedia of Nuclear Magnetic Resonance, 8, pp. 4909-4925. , Grant. D. M, Harris, R. H, Eds, J. Wiley & Sons Ltd, Chichester, U.KLandais, Y., Robin, J.P., Lebrun, A., Ruthenium dioxide in fluoro acid medium. 1. A new agent in the biaryl oxidative coupling. Application to the synthesis of non phenolic bisbenzocyclooctadiene lignan lactones (1991) Tetrahedron, 47, pp. 3787-3804Lopez, J.C., Alonso, J.L., Cervellati, R., Esposti, A.D., Lister, D.G., Palmieri, P., Conformational and Ring Inversion in γ-Butyrolactone. Part 1 -Microwave Spectrum (1990) J. Chem. Soc Faraday Trans, 86, pp. 453-458Esposti, D.D., Alonso, J.L., Cervellati, R., Lister, D.G., Lopez, J.C., Palmieri, P., Conformational and Ring Inversion in γ-Butyrolactone. Part 2-Ab initio and Flexible Model Computations (1990) J. Chem. Soc Faraday Trans, 86, pp. 459-466Masia, M., Rey, R., Computational Study of γ-Butyrolactone and Li+/γ-butyrolactone in Gas and Liquid Phases (2004) J. Phys. Chem. B, 108, pp. 17992-18002Charro, M.E., Alonso, J.L., Barriers to Internal Rotation in β-Methyl-γ-Butyrolactone, 3-Methylcyclopentanone, and γ-Valerolactone from Fourier Transform Microwave Spectroscopy (1996) J. Mol. Spectrosc, 176, pp. 251-257Lopez, J.C., Alonso, J.L., Pelaez, F.J., The Microwave Spectrum of α-Methyl-γ-butyrolactone (1988) J. Mol. Spectrosc, 131, pp. 9-20Aakeroy, C.B., Seddon, K.R., The Hydrogen Bond and Crystal Engineering (1993) Chem. Soc. Rev, 22, pp. 397-404Hatu, T., Sato, S., Tamura, C., (E)-4-(2-hydroxyiminocyclopentylmethyl)- phenylacetic acid (1986) Acta Crystallogr. C, 42, pp. 452-454Caminati, W., Damiani, D., Corbelli, G., Velino, B., Bock, C.W., Microwave-spectrum and ab initio calculations of ethylbenzene. Potential energy surface of the ethyl group torsion (1991) Mol. Phys, 74, pp. 885-895Emsley, J.W., DeLuca, G., Celebre, G., Longeri, M., The conformation of the aromatic rings rleative to the alkyl chain in 4-n-pentyl4′- cyanobiphenyl (1996) Liquid Cryst, 20, pp. 569-575Cinacchi, G., Prampolini, G., DFT Study of the Torsional Potential in Ethylbenzene and Ethyxybenzene: The Smallest Prototypes of Alkyland Alkoxy-Aryl Mesogens (2003) J. Phys. Chem. A, 107, pp. 5228-5232Maté, B., Suenram, R.D., Lugez, C., Microwave studies of three alkylbenzenes: Ethyl, n-propyl, and n-butylbenzenes (2000) J. Chem. Phys, 113, pp. 192-199Tong, X., Ford, M.S., Dessent, C.E.H., Müller-Dethlefs, K., The effect of conformation on the ionization energetics of n-butylbenzene. I. A threshold ionization study (2003) J. Chem. Phys, 119, pp. 12908-12913Ford, M.S., Tong, X., Dessent, C.E.H., Müller-Dethlefs, K., The effect of conformation on the ionization energetics of n-butylbenzene. I. A zero electron kinetic energy photoelectron spectroscopy study with partial rotational resolution (2003) J. Chem. Phys, 119, pp. 12914-12920Campanelli, A.R., Ramondo, F., Domenicano, A., Hargittai, I., Molecular Structure and Conformation of tert-Butylbezenes: A Concerted Study by Gas-Phase Electron Diffraction and Theoretical Calculations (1994) J. Phys. Chem, 98, pp. 11046-11052Anastasakos, L., Wildman, T.A., The effect of internal rotation on the methyl CH-stretching overtone spectra of toluene and the xylenes (1993) J. Chem. Phys, 99, pp. 9453-9459Chelli, R., Gervasio, F.L., Procacci, P., Schettino, V., Stacking and T-shape Competition in Aromatic-Aromatic Amino Acid Interactions (2002) J. Am. Chem. Soc, 124, pp. 6133-6143McGaughey, G.B., Gagnés, M., Rappé, A.K., π-Stacking Interactions (1998) J. Biol. Chem, 273, pp. 15458-15463Aravinda, S., Shamala, N., Das, C., Srivanjini, A., Karle, I.L., Balaram, P., Aromatic-Aromatic Interactions in Crystal Structures of Helical Peptide Scaffolds Containing Projecting Phenylalanine Residues (2003) J. Am. Chem. Soc, 125, pp. 5308-5315Sony, S.M.M., Ponnuswamy, M.N., Nature of π-interactions in nitrogen-containing heterocyclic systems: A structural database analysis (2006) Cryst. Growth Des, 6, pp. 736-742Honda, T., Kimura, N., Sato, S., Kato, D., Tominaga, H., Chiral Synthesis of Lignan Lactones, (-)-Hinokinin, (-)-Deoxypodorhizone, (-)Isobalactone and (-)-Savinin by Means of Enantioselective Deprotonation (1994) J. Chem. Soc., Perkin Trans, 1, pp. 1043-1046Bode, J.W., Doyle, M.P., Protopopova, M.N., Zhou, Q.-L., Intramolecular Regioselective Insertion into Unactivated Prochiral Carbon-Hydrogen Bonds with Diazoacetates of Primary Alcohols Catalyzed by Chiral Dirhodium(II) Carboxamidates. Highly Enantioselective Total Synthesis of Natural Lignan Lactones (1996) J. Org. Chem, 61, pp. 9146-9155Sakakibara, N., Suzuki, S., Umezawa, T., Shimada, M., Biosynthesis of yatein in Anthriscus sylvestris (2003) Org. Biomol. Chem, 1, pp. 2474-2484Takekawa, Y., Shishido, K., Fragmentation Reactions of Optically Active Trisubstituted Cyclopropylcarbinyl Radicals (2001) J. Org. Chem, 66, pp. 8490-8503Itoh, T., Chika, J.-I., Takagi, Y., Nishiyama, S., An Efficient Enantioselective Total Synthesis of Antitumor Lignans: Synthesis of Enantiomerically Pure 4-Hydroxyalkanenitriles via an Enzymatic Reaction (1993) J. Org. Chem, 58, pp. 5717-5723Brinksma, J., van der Deen, H., van Oeveren, A., Feringa, B.L., Enantioselective synthesis of benzylbutyrolactones from 5-hydroxyfuran-2(5H)- one. New chiral synthons for dibenzylbutyrolactone lignans by a chemoenzymatic route (1998) J. Chem. Soc., Perkin Trans, 1, pp. 4159-4163Vanderlei, J.M.L., Coelho, F., Almeida, W.P., A Simple and Stereoselective Synthesis of (+)-β-Piperonyl-γ-butyrolactone (1998) Synth. Commun, 28, pp. 3047-3055Srikrishna, A., Danieldoss, S., Radical Cyclisation Based Approach to Lignans. Synthesis of 4-Arylmethyldihydrofuran-2-ones (2001) Synth. Commun, 31, pp. 2357-2364Morimoto, T., Nagai, H., Achiwa, K., Lipase-Catalyzed Esterification of a (±)-2,3-Di(arylmethyl)-1,4-butanediol and Its Application to the Synthesis of (SgS)-(+)-Hinokinin (2005) Synth. Commun, 35, pp. 857-865Souza, V.A., Silva, R., Pereira, A.C., Royo, V.A., Saraiva, J., Montanheiro, M., Souza, G.H.B., Silva, M.L.A., Trypanocidal activity of (-)-cubebin derivatives against free amastigote forms of Trypanosoma cruzi (2005) Bioorg. Med. Chem. Lett, 15, pp. 303-307Rehnberg, N., Magnusson, G., General conjugate-addition method for the synthesis of enantiomerically pure lignans. Total synthesis of (-)and (+)-burseran, (-)-dehydroxycubebin. (-)-trichostin, (-)-cubebin, (-)5″-methoxyhinokinin, and (-)-hinokinin (1990) J. Org. Chem, 55, pp. 4340-4349Belletire, J.L., Fry, D.F., Oxidative Coupling of Carboxylic Acid Dianions: The Total Synthesis of (±)-Hinokinin and (±)-Fomentaric Acid (1987) J. Org. Chem, 52, pp. 2549-2555Heleno, V.C.G., Silva, R., Pedersoli, S., Albuquerque, S., Bastos, J.K., Silva, M.L.A., Donate, P.M., Lopes, J.L.C., Detailed 1H and 13C NMR structural assignment of three biologically active lignan lactones (2005) Spectrochim. Acta A, 63, pp. 234-239Vaz, E.Fernández, I.Muñoz, L.Llor, J. Conformational Equilibria of 7-Benzyl-2-iodo-9-oxa-7-azabicyclo[4.3.0]nonan-8-one in Solution. Correlations between Conformational Distribution and Solvent Solvatochromic Parameters. J. Org. Chem. 2006, 71, 2558-2564Tvaroška, I., Taravel, F.R., Utille, J.P., Carver, J.P., Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides (2002) Carbohvdr. Res, 337, pp. 353-367Höfinger, S., Zerbetto, F., The Free Energy of Nanobubbles in Organic Liquids (2003) J. Phys. Chem. A, 107, pp. 11253-11257Gonçalves, P.F.B., Stassen, H., Free Energy of Solvation from Molecular Dynamics Simulations for Low Dielectric Solvents (2003) J. Comput. Chem, 24, pp. 1758-1765Hippler, M. Quantum-chemical study of CHCl3-SO22 association. J. Chem. Phys. 2005, 123, 204311.1-204311.11Chung, S., Hippler, M., Infrared spectroscopy of hydrogen-bonded CHCl 3-SO2 in the gas phase (2006) J. Chem. Phys, 124, pp. 214316.1-214316.7Ribeiro-Claro, P.J.A., Vaz, P.D., Towards the understanding of the spectroscopic behaviour of the C-H oscillator in C-H⋯O hydrogen bonds: The effect of solvent polarity (2004) Chem. Phys. Lett, 390, pp. 358-361Zheng, J, Liu, Q, Zhang. H, Fang. D. Solvent effect on infrared spectra of methyl methacrylate in CCl4C6H14, CHCl3/C6H14 and C2H5 OH/C4H14 binary solvent systems. Spectrochim. Acta A 2004, 60, 3119-3123Henn. M.Jurkschat, K.Mansfeld, D.Mehring, M.Schürmann, M. Synthesis and structure of and DFT-studies on 1,3,5-[P(O)(i-PrO) 2]3C6H3 and its CHCl3 adducts: analysis of the Cl3C-H⋯OP hydrogen bond. J. Mol. Struct. 2004, 697, 213-220Villa, A., Mark, A.E., Calculation of the Free Energy of Solvation for Neutral Analogs of Amino Acid Side Chains (2002) J. Comput. Chem, 23, pp. 548-553Chambers, C.C., Hawkins, G.D., Cramer, C.J., Truhlar, D.G., Model for Aqueous Solvation Based on Class IV Atomic Charges and First Solvation Shell Effects (1996) J. Phys. Chem, 100, pp. 16385-1639
    corecore