4,046 research outputs found

    The harmonious chromatic number of almost all trees

    Get PDF

    Harmonious Coloring of Trees with Large Maximum Degree

    Get PDF
    A harmonious coloring of GG is a proper vertex coloring of GG such that every pair of colors appears on at most one pair of adjacent vertices. The harmonious chromatic number of GG, h(G)h(G), is the minimum number of colors needed for a harmonious coloring of GG. We show that if TT is a forest of order nn with maximum degree Δ(T)n+23\Delta(T)\geq \frac{n+2}{3}, then h(T)= \Delta(T)+2, & if $T$ has non-adjacent vertices of degree $\Delta(T)$; \Delta(T)+1, & otherwise. Moreover, the proof yields a polynomial-time algorithm for an optimal harmonious coloring of such a forest.Comment: 8 pages, 1 figur

    Upward Three-Dimensional Grid Drawings of Graphs

    Full text link
    A \emph{three-dimensional grid drawing} of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. We prove that every nn-vertex graph with bounded degeneracy has a three-dimensional grid drawing with O(n3/2)O(n^{3/2}) volume. This is the broadest class of graphs admiting such drawings. A three-dimensional grid drawing of a directed graph is \emph{upward} if every arc points up in the z-direction. We prove that every directed acyclic graph has an upward three-dimensional grid drawing with (n3)(n^3) volume, which is tight for the complete dag. The previous best upper bound was O(n4)O(n^4). Our main result is that every cc-colourable directed acyclic graph (cc constant) has an upward three-dimensional grid drawing with O(n2)O(n^2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n3)O(n^3) for many classes of directed acyclic graphs, including planar, series parallel, and outerplanar

    A note on "Folding wheels and fans."

    Full text link
    In S.Gervacio, R.Guerrero and H.Rara, Folding wheels and fans, Graphs and Combinatorics 18 (2002) 731-737, the authors obtain formulas for the clique numbers onto which wheels and fans fold. We present an interpolation theorem which generalizes their theorems 4.2 and 5.2. We show that their formula for wheels is wrong. We show that for threshold graphs, the achromatic number and folding number coincides with the chromatic number

    Asymmetric coloring games on incomparability graphs

    Full text link
    Consider the following game on a graph GG: Alice and Bob take turns coloring the vertices of GG properly from a fixed set of colors; Alice wins when the entire graph has been colored, while Bob wins when some uncolored vertices have been left. The game chromatic number of GG is the minimum number of colors that allows Alice to win the game. The game Grundy number of GG is defined similarly except that the players color the vertices according to the first-fit rule and they only decide on the order in which it is applied. The (a,b)(a,b)-game chromatic and Grundy numbers are defined likewise except that Alice colors aa vertices and Bob colors bb vertices in each round. We study the behavior of these parameters for incomparability graphs of posets with bounded width. We conjecture a complete characterization of the pairs (a,b)(a,b) for which the (a,b)(a,b)-game chromatic and Grundy numbers are bounded in terms of the width of the poset; we prove that it gives a necessary condition and provide some evidence for its sufficiency. We also show that the game chromatic number is not bounded in terms of the Grundy number, which answers a question of Havet and Zhu

    On the oriented chromatic number of dense graphs

    Get PDF
    Let GG be a graph with nn vertices, mm edges, average degree δ\delta, and maximum degree Δ\Delta. The \emph{oriented chromatic number} of GG is the maximum, taken over all orientations of GG, of the minimum number of colours in a proper vertex colouring such that between every pair of colour classes all edges have the same orientation. We investigate the oriented chromatic number of graphs, such as the hypercube, for which δlogn\delta\geq\log n. We prove that every such graph has oriented chromatic number at least Ω(n)\Omega(\sqrt{n}). In the case that δ(2+ϵ)logn\delta\geq(2+\epsilon)\log n, this lower bound is improved to Ω(m)\Omega(\sqrt{m}). Through a simple connection with harmonious colourings, we prove a general upper bound of \Oh{\Delta\sqrt{n}} on the oriented chromatic number. Moreover this bound is best possible for certain graphs. These lower and upper bounds are particularly close when GG is (clognc\log n)-regular for some constant c>2c>2, in which case the oriented chromatic number is between Ω(nlogn)\Omega(\sqrt{n\log n}) and O(nlogn)\mathcal{O}(\sqrt{n}\log n)

    Topological and algebraic properties of universal groups for right-angled buildings

    Full text link
    We study universal groups for right-angled buildings. Inspired by Simon Smith's work on universal groups for trees, we explicitly allow local groups that are not necessarily finite nor transitive. We discuss various topological and algebraic properties in this extended setting. In particular, we characterise when these groups are locally compact, when they are abstractly simple, when they act primitively on residues of the building, and we discuss some necessary and sufficient conditions for the groups to be compactly generated. We point out that there are unexpected aspects related to the geometry and the diagram of these buildings that influence the topological and algebraic properties of the corresponding universal groups.Comment: 31 page

    Group Sum Chromatic Number of Graphs

    Full text link
    We investigate the \textit{group sum chromatic number} (\gchi(G)) of graphs, i.e. the smallest value ss such that taking any Abelian group \gr of order ss, there exists a function f:E(G)\rightarrow \gr such that the sums of edge labels properly colour the vertices. It is known that \gchi(G)\in\{\chi(G),\chi(G)+1\} for any graph GG with no component of order less than 33 and we characterize the graphs for which \gchi(G)=\chi(G).Comment: Accepted for publication in European Journal of Combinatorics, Elsevie
    corecore