279 research outputs found

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page

    Robustness and Randomness

    Get PDF
    Robustness problems of computational geometry algorithms is a topic that has been subject to intensive research efforts from both computer science and mathematics communities. Robustness problems are caused by the lack of precision in computations involving floating-point instead of real numbers. This paper reviews methods dealing with robustness and inaccuracy problems. It discussed approaches based on exact arithmetic, interval arithmetic and probabilistic methods. The paper investigates the possibility to use randomness at certain levels of reasoning to make geometric constructions more robust

    The status and programs of the New Relativity Theory

    Get PDF
    A review of the most recent results of the New Relativity Theory is presented. These include a straightforward derivation of the Black Hole Entropy-Area relation and its logarithmiclogarithmic corrections; the derivation of the string uncertainty relations and generalizations ; ; the relation between the four dimensional gravitational conformal anomaly and the fine structure constant; the role of Noncommutative Geometry, Negative Probabilities and Cantorian-Fractal spacetime in the Young's two-slit experiment. We then generalize the recent construction of the Quenched-Minisuperspace bosonic pp-brane propagator in DD dimensions (AACSAACS [18]) to the full multidimensional case involving all pp-branes : the construction of the Multidimensional-Particle propagator in Clifford spaces (CC-spaces) associated with a nested family of pp-loop histories living in a target DD-dim background spacetime . We show how the effective CC-space geometry is related to extrinsicextrinsic curvature of ordinary spacetime. The motion of rigid particles/branes is studied to explain the natural emergenceemergence of classical spin. The relation among CC-space geometry and W{\cal W}, Finsler Geometry and (Braided) Quantum Groups is discussed. Some final remarks about the Riemannian long distance limit of CC-space geometry are made.Comment: Tex file, 21 page

    Index to Volume 7

    Get PDF

    Frobenius flocks and algebraicity of matroids

    Get PDF

    Double quiver gauge theory and nearly Kahler flux compactifications

    Full text link
    We consider G-equivariant dimensional reduction of Yang-Mills theory with torsion on manifolds of the form MxG/H where M is a smooth manifold, and G/H is a compact six-dimensional homogeneous space provided with a never integrable almost complex structure and a family of SU(3)-structures which includes a nearly Kahler structure. We establish an equivalence between G-equivariant pseudo-holomorphic vector bundles on MxG/H and new quiver bundles on M associated to the double of a quiver Q, determined by the SU(3)-structure, with relations ensuring the absence of oriented cycles in Q. When M=R^2, we describe an equivalence between G-invariant solutions of Spin(7)-instanton equations on MxG/H and solutions of new quiver vortex equations on M. It is shown that generic invariant Spin(7)-instanton configurations correspond to quivers Q that contain non-trivial oriented cycles.Comment: 42 pages; v2: minor corrections; Final version to be published in JHE
    • …
    corecore