21 research outputs found

    Polytopes and Loop Quantum Gravity

    Get PDF
    The main aim of this thesis is to give a geometrical interpretation of ``spacetime grains'' at Planck scales in the framework of Loop Quantum Gravity. My work consisted in analyzing the details of the interpretation of the quanta of space in terms of polytopes. The main results I obtained are the following: We clarified details on the relation between polytopes and interwiners, and concluded that an intertwiner can be seen unambiguously as the state of a \emph{quantum polytope}. Next we analyzed the properties of these polytopes: studying how to reconstruct the solid figure from LQG variables, the possible shapes and the volume. We adapted existing algorithms to express the geometry of the polytopes in terms of the holonomy-fluxes variables of LQG, thus providing an explicit bridge between the original variables and the interpretation in terms of polytopes of the phase space. Finally we present some direct application of this geometrical picture. We defined a volume operator such as in the large spin limit it reproduce the geometrical volume of a polytope, we computed numerically his spectrum for some elementary cases and we pointed out some asymptotic property of his spectrum. We discuss applications of the picture in terms of polytopes to the study of the semiclassical limit of LQG, in particular commenting a connection between the quantum dynamics and a generalization of Regge calculus on polytopes

    On 4-Dimensional Point Groups and on Realization Spaces of Polytopes

    Get PDF
    This dissertation consists of two parts. We highlight the main results from each part. Part I. 4-Dimensional Point Groups. (based on a joint work with Günter Rote.) We propose the following classification for the finite groups of orthogonal transformations in 4-space, the so-called 4-dimensional point groups. Theorem A. The 4-dimensional point groups can be classified into * 25 polyhedral groups (Table 5.1), * 21 axial groups (7 pyramidal groups, 7 prismatic groups, and 7 hybrid groups, Table 6.3), * 22 one-parameter families of tubical groups (11 left tubical groups and 11 right tubical groups, Table 3.1), and * 25 infinite families of toroidal groups (2 three-parameter families, 19 two-parameter families, and 4 one-parameter families, Table 4.3.) In contrast to earlier classifications of these groups (notably by Du Val in 1962 and by Conway and Smith in 2003), see Section 1.7), we emphasize a geometric viewpoint, trying to visualize and understand actions of these groups. Besides, we correct some omissions, duplications, and mistakes in these classifications. The 25 polyhedral groups (Chapter 5) are related to the regular polytopes. The symmetries of the regular polytopes are well understood, because they are generated by reflections, and the classification of such groups as Coxeter groups is classic. We will deal with these groups only briefly, dwelling a little on just a few groups that come in enantiomorphic pairs (i.e., groups that are not equal to their own mirror.) The 21 axial groups (Chapter 6) are those that keep one axis fixed. Thus, they essentially operate in the three dimensions perpendicular to this axis (possibly combined with a flip of the axis), and they are easy to handle, based on the well-known classification of the three-dimensional point groups. The tubical groups (Chapter 3) are characterized as those that have (exactly) one Hopf bundle invariant. They come in left and right versions (which are mirrors of each other) depending on the Hopf bundle they keep invariant. They are so named because they arise with a decomposition of the 3-sphere into tube-like structures (discrete Hopf fibrations). The toroidal groups (Chapter 4) are characterized as having an invariant torus. This class of groups is where our main contribution in terms of the completeness of the classification lies. We propose a new, geometric, classification of these groups. Essentially, it boils down to classifying the isometry groups of the two-dimensional square flat torus. We emphasize that, regarding the completeness of the classification, in particular concerning the polyhedral and tubical groups, we rely on the classic approach (see Section 1.6). Only for the toroidal and axial groups, we supplant the classic approach by our geometric approach. We give a self-contained presentation of Hopf fibrations (Chapter 2). In many places in the literature, one particular Hopf map is introduced as “the Hopf map”, either in terms of four real coordinates or two complex coordinates, leading to “the Hopf fibration”. In some sense, this is justified, as all Hopf bundles are (mirror-)congruent. However, for our characterization, we require the full generality of Hopf bundles. As a tool for working with Hopf fibrations, we introduce a parameterization for great circles in S^3 , which might be useful elsewhere. Our main tool to understand tubical groups are polar orbit polytopes. (Chapter 1). In particular, we study the symmetries of a cell of the polar orbit polytope for different starting points. Part II. Realization Spaces of Polytopes (based on a joint work with Rainer Sinn and Günter M. Ziegler.) Robertson in 1988 suggested a model for the realization space of a d-dimensional polytope P, and an approach via the implicit function theorem to prove that the realization space is a smooth manifold of dimension NG(P) := d(f_0 + f_{d−1} ) - f{0,d-1} . We call NG(P) the natural guess for (the dimension of the realization space of) P. We build on Robertson's model and approach to study the realization spaces of higher-dimensional polytopes. We conclude combinatorial criteria (Sections 9.3.3 and 9.4.1) to decide if the realization space of the polytope in consideration is a smooth manifold of dimension given by the natural guess. As another application, we study the realization spaces of the second hypersimplices (Section 9.4.2). We apply these criteria on 4-polytopes with small number of vertices, and along the way, we analyze examples where Robertson’s approach fails, identifying the three smallest examples of 4-polytopes, for which the realization space is still a smooth manifold, but its dimension is not given by the natural guess (Section 9.5). Finally, we investigate the realization space of the 24-cell (Section 9.5.2). We construct families of realizations of the 24-cell, and using them we show that the realization space of the 24-cell has points where it is not a smooth manifold. This provides the first known example of a polytope whose realization space is not a smooth manifold. We conclude by showing that the dimension of the realization space of the 24-cell is at least 48 and at most 52.Diese Dissertation befasst sich mit zwei verschiedenen Themen, von denen jedes seinen eigenen Teil hat. Der erste Teil befasst sich mit 4-dimensionalen Punktgruppen. Wir schlagen eine neue Klassifizierung für diese Gruppen vor (siehe Theorem A), die im Gegensatz zu früheren Klassifizierungen eine geometrische Sichtweise betont und versucht, die Aktionen dieser Gruppen zu visualisieren und zu verstehen. Im Folgenden werden diese Gruppen kurz beschrieben. Die polyedrischen Gruppen (Kapitel 5) sind mit den regelmäßigen Polytopen verwandt. Die axialen Gruppen (Kapitel 6) sind diejenigen, die eine Achse festhalten. Die schlauchartigen Gruppen (Kapitel 3) werden als solche charakterisiert, die genau eine invariantes Hopf-Bündel haben. Sie entstehen bei einer Zerlegung der 3-Sphäre in schlauchartige Strukturen (diskrete Hopf-Faserungen). Die toroidalen Gruppen (Kapitel 4) sind dadurch gekennzeichnet, dass sie einen invarianten Torus haben. Wir schlagen eine neue, geometrische Klassifizierung dieser Gruppen vor. Im Wesentlichen läuft sie darauf hinaus, die Isometriegruppen des zweidimensionalen quadratischen flachen Torus zu klassifizieren. Nebenbei geben wir eine in sich geschlossene Darstellung der Hopf-Faserungen (Kapitel 2). Als Hilfsmittel für die Arbeit mit ihnen führen wir eine Parametrisierung für Großkreise in S 3 ein, die an anderer Stelle nützlich sein könnte. Der zweite Teil befasst sich mit Realisierungsräumen von Polytopen. Wir bauen auf Robertsons Modell und Ansatz auf, um die Realisierungsräume von Polytopen zu untersuchen. Wir stellen kombinatorische Kriterien auf (Abschnitte 9.3.3 und 9.4.1), um zu entscheiden, ob der Realisierungsraum des betrachteten Polytops eine glatte Mannigfaltigkeit der durch die “natürliche Vermutung” gegebenen Dimension ist. Als weitere Anwendung, untersuchen wir die Realisierungsräume der zweiten Hypersimplices (Abschnitt 9.4.2). Nebenbei identifizieren wir die kleinsten Beispiele von 4-Polytopen, für die dieser Ansatz versagt (Abschnitt 9.5). Schließlich untersuchen wir den Realisierungsraum der 24-Zelle (Abschnitt 9.5.2). Wir zeigen, dass es Punkte gibt, an denen sie keine glatte Mannigfaltigkeit ist. Zuletzt zeigen wir, dass seine Dimension mindestens 48 und höchstens 52 beträgt

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    Triangulated Manifolds with Few Vertices: Geometric 3-Manifolds

    Full text link
    We explicitly construct small triangulations for a number of well-known 3-dimensional manifolds and give a brief outline of some aspects of the underlying theory of 3-manifolds and its historical development.Comment: 48 pages, 18 figure

    VLSI Routing for Advanced Technology

    Get PDF
    Routing is a major step in VLSI design, the design process of complex integrated circuits (commonly known as chips). The basic task in routing is to connect predetermined locations on a chip (pins) with wires which serve as electrical connections. One main challenge in routing for advanced chip technology is the increasing complexity of design rules which reflect manufacturing requirements. In this thesis we investigate various aspects of this challenge. First, we consider polygon decomposition problems in the context of VLSI design rules. We introduce different width notions for polygons which are important for width-dependent design rules in VLSI routing, and we present efficient algorithms for computing width-preserving decompositions of rectilinear polygons into rectangles. Such decompositions are used in routing to allow for fast design rule checking. A main contribution of this thesis is an O(n) time algorithm for computing a decomposition of a simple rectilinear polygon with n vertices into O(n) rectangles, preseverving two-dimensional width. Here the two-dimensional width at a point of the polygon is defined as the edge length of a largest square that contains the point and is contained in the polygon. In order to obtain these results we establish a connection between such decompositions and Voronoi diagrams. Furthermore, we consider implications of multiple patterning and other advanced design rules for VLSI routing. The main contribution in this context is the detailed description of a routing approach which is able to manage such advanced design rules. As a main algorithmic concept we use multi-label shortest paths where certain path properties (which model design rules) can be enforced by defining labels assigned to path vertices and allowing only certain label transitions. The described approach has been implemented in BonnRoute, a VLSI routing tool developed at the Research Institute for Discrete Mathematics, University of Bonn, in cooperation with IBM. We present experimental results confirming that a flow combining BonnRoute and an external cleanup step produces far superior results compared to an industry standard router. In particular, our proposed flow runs more than twice as fast, reduces the via count by more than 20%, the wiring length by more than 10%, and the number of remaining design rule errors by more than 60%. These results obtained by applying our multiple patterning approach to real-world chip instances provided by IBM are another main contribution of this thesis. We note that IBM uses our proposed combined BonnRoute flow as the default tool for signal routing

    Novel procedures for graph edge-colouring

    Get PDF
    Orientador: Dr. Renato CarmoCoorientador: Dr. André Luiz Pires GuedesTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 05/12/2018Inclui referências e índiceÁrea de concentração: Ciência da ComputaçãoResumo: O índice cromático de um grafo G é o menor número de cores necessário para colorir as arestas de G de modo que não haja duas arestas adjacentes recebendo a mesma cor. Pelo célebre Teorema de Vizing, o índice cromático de qualquer grafo simples G ou é seu grau máximo , ou é ? + 1, em cujo caso G é dito Classe 1 ou Classe 2, respectivamente. Computar uma coloração de arestas ótima de um grafo ou simplesmente determinar seu índice cromático são problemas NP-difíceis importantes que aparecem em aplicações notáveis, como redes de sensores, redes ópticas, controle de produção, e jogos. Neste trabalho, nós apresentamos novos procedimentos de tempo polinomial para colorir otimamente as arestas de grafos pertences a alguns conjuntos grandes. Por exemplo, seja X a classe dos grafos cujos maiorais (vértices de grau ?) possuem soma local de graus no máximo ?2 ?? (entendemos por 'soma local de graus' de um vértice x a soma dos graus dos vizinhos de x). Nós mostramos que quase todo grafo está em X e, estendendo o procedimento de recoloração que Vizing usou na prova para seu teorema, mostramos que todo grafo em X é Classe 1. Nós também conseguimos resultados em outras classes de grafos, como os grafos-junção, os grafos arco-circulares, e os prismas complementares. Como um exemplo, nós mostramos que um prisma complementar só pode ser Classe 2 se for um grafo regular distinto do K2. No que diz respeito aos grafos-junção, nós mostramos que se G1 e G2 são grafos disjuntos tais que |V(G1)| _ |V(G2)| e ?(G1) _ ?(G2), e se os maiorais de G1 induzem um grafo acíclico, então o grafo-junção G1 ?G2 é Classe 1. Além desses resultados em coloração de arestas, apresentamos resultados parciais em coloração total de grafos-junção, de grafos arco-circulares, e de grafos cobipartidos, bem como discutimos um procedimento de recoloração para coloração total. Palavras-chave: Coloração de grafos e hipergrafos (MSC 05C15). Algoritmos de grafos (MSC 05C85). Teoria dos grafos em relação à Ciência da Computação (MSC 68R10). Graus de vértices (MSC 05C07). Operações de grafos (MSC 05C76).Abstract: The chromatic index of a graph G is the minimum number of colours needed to colour the edges of G in a manner that no two adjacent edges receive the same colour. By the celebrated Vizing's Theorem, the chromatic index of any simple graph G is either its maximum degree ? or it is ? + 1, in which case G is said to be Class 1 or Class 2, respectively. Computing an optimal edge-colouring of a graph or simply determining its chromatic index are important NP-hard problems which appear in noteworthy applications, like sensor networks, optical networks, production control, and games. In this work we present novel polynomial-time procedures for optimally edge-colouring graphs belonging to some large sets of graphs. For example, let X be the class of the graphs whose majors (vertices of degree ?) have local degree sum at most ?2 ? ? (by 'local degree sum' of a vertex x we mean the sum of the degrees of the neighbours of x). We show that almost every graph is in X and, by extending the recolouring procedure used by Vizing's in the proof for his theorem, we show that every graph in X is Class 1. We further achieve results in other graph classes, such as join graphs, circular-arc graphs, and complementary prisms. For instance, we show that a complementary prism can be Class 2 only if it is a regular graph distinct from the K2. Concerning join graphs, we show that if G1 and G2 are disjoint graphs such that |V(G1)| _ |V(G2)| and ?(G1) _ ?(G2), and if the majors of G1 induce an acyclic graph, then the join graph G1 ?G2 is Class 1. Besides these results on edge-colouring, we present partial results on total colouring join graphs, cobipartite graphs, and circular-arc graphs, as well as a discussion on a recolouring procedure for total colouring. Keywords: Colouring of graphs and hypergraphs (MSC 05C15). Graph algorithms (MSC 05C85). Graph theory in relation to Computer Science (MSC 68R10). Vertex degrees (MSC 05C07). Graph operations (MSC 05C76)
    corecore