4,634 research outputs found

    Coupled Maps with Growth and Death: An Approach to Cell Differentiation

    Full text link
    An extension of coupled maps is given which allows for the growth of the number of elements, and is inspired by the cell differentiation problem. The growth of elements is made possible first by clustering the phases, and then by differentiating roles. The former leads to the time sharing of resources, while the latter leads to the separation of roles for the growth. The mechanism of the differentiation of elements is studied. An extension to a model with several internal phase variables is given, which shows differentiation of internal states. The relevance of interacting dynamics with internal states (``intra-inter" dynamics) to biological problems is discussed with an emphasis on heterogeneity by clustering, macroscopic robustness by partial synchronization and recursivity with the selection of initial conditions and digitalization.Comment: LatexText,figures are not included. submitted to PhysicaD (1995,revised 1996 May

    Dynamical systems with time-dependent coupling: Clustering and critical behaviour

    Full text link
    We study the collective behaviour of an ensemble of coupled motile elements whose interactions depend on time and are alternatively attractive or repulsive. The evolution of interactions is driven by individual internal variables with autonomous dynamics. The system exhibits different dynamical regimes, with various forms of collective organization, controlled by the range of interactions and the dispersion of time scales in the evolution of the internal variables. In the limit of large interaction ranges, it reduces to an ensemble of coupled identical phase oscillators and, to some extent, admits to be treated analytically. We find and characterize a transition between ordered and disordered states, mediated by a regime of dynamical clustering.Comment: to appear in Physica

    Learning theories reveal loss of pancreatic electrical connectivity in diabetes as an adaptive response

    Get PDF
    Cells of almost all solid tissues are connected with gap junctions which permit the direct transfer of ions and small molecules, integral to regulating coordinated function in the tissue. The pancreatic islets of Langerhans are responsible for secreting the hormone insulin in response to glucose stimulation. Gap junctions are the only electrical contacts between the beta-cells in the tissue of these excitable islets. It is generally believed that they are responsible for synchrony of the membrane voltage oscillations among beta-cells, and thereby pulsatility of insulin secretion. Most attempts to understand connectivity in islets are often interpreted, bottom-up, in terms of measurements of gap junctional conductance. This does not, however explain systematic changes, such as a diminished junctional conductance in type 2 diabetes. We attempt to address this deficit via the model presented here, which is a learning theory of gap junctional adaptation derived with analogy to neural systems. Here, gap junctions are modelled as bonds in a beta-cell network, that are altered according to homeostatic rules of plasticity. Our analysis reveals that it is nearly impossible to view gap junctions as homogeneous across a tissue. A modified view that accommodates heterogeneity of junction strengths in the islet can explain why, for example, a loss of gap junction conductance in diabetes is necessary for an increase in plasma insulin levels following hyperglycemia.Comment: 15 pages, 5 figures. To appear in PLoS One (2013

    Topological Measure Locating the Effective Crossover between Segregation and Integration in a Modular Network

    Get PDF
    We introduce an easily computable topological measure which locates the effective crossover between segregation and integration in a modular network. Segregation corresponds to the degree of network modularity, while integration is expressed in terms of the algebraic connectivity of an associated hyper-graph. The rigorous treatment of the simplified case of cliques of equal size that are gradually rewired until they become completely merged, allows us to show that this topological crossover can be made to coincide with a dynamical crossover from cluster to global synchronization of a system of coupled phase oscillators. The dynamical crossover is signaled by a peak in the product of the measures of intra-cluster and global synchronization, which we propose as a dynamical measure of complexity. This quantity is much easier to compute than the entropy (of the average frequencies of the oscillators), and displays a behavior which closely mimics that of the dynamical complexity index based on the latter. The proposed toplogical measure simultaneously provides information on the dynamical behavior, sheds light on the interplay between modularity vs total integration and shows how this affects the capability of the network to perform both local and distributed dynamical tasks
    • …
    corecore