6 research outputs found

    Horizontal isogeny graphs of ordinary abelian varieties and the discrete logarithm problem

    Get PDF
    Fix an ordinary abelian variety defined over a finite field. The ideal class group of its endomorphism ring acts freely on the set of isogenous varieties with same endomorphism ring, by complex multiplication. Any subgroup of the class group, and generating set thereof, induces an isogeny graph on the orbit of the variety for this subgroup. We compute (under the Generalized Riemann Hypothesis) some bounds on the norms of prime ideals generating it, such that the associated graph has good expansion properties. We use these graphs, together with a recent algorithm of Dudeanu, Jetchev and Robert for computing explicit isogenies in genus 2, to prove random self-reducibility of the discrete logarithm problem within the subclasses of principally polarizable ordinary abelian surfaces with fixed endomorphism ring. In addition, we remove the heuristics in the complexity analysis of an algorithm of Galbraith for explicitly computing isogenies between two elliptic curves in the same isogeny class, and extend it to a more general setting including genus 2.Comment: 18 page

    Isogeny graphs with maximal real multiplication

    Get PDF
    An isogeny graph is a graph whose vertices are principally polarizable abelian varieties and whose edges are isogenies between these varieties. In his thesis, Kohel describes the structure of isogeny graphs for elliptic curves and shows that one may compute the endomorphism ring of an elliptic curve defined over a finite field by using a depth-first search (DFS) algorithm in the graph. In dimension 2, the structure of isogeny graphs is less understood and existing algorithms for computing endomorphism rings are very expensive. In this article, we show that, under certain circumstances, the problem of determining the endomorphism ring can also be solved in genus 2 with a DFS-based algorithm. We consider the case of genus-2 Jacobians with complex multiplication, with the assumptions that the real multiplication subring is maximal and has class number one. We describe the isogeny graphs in that case, locally at prime numbers which split in the real multiplication subfield. The resulting algorithm is implemented over finite fields, and examples are provided. To the best of our knowledge, this is the first DFS-based algorithm in genus 2

    Computational Aspects of Jacobians of Hyperelliptic Curves

    Get PDF
    Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem (DLP) in finite groups whose group representation is not yet exploited. For such groups, the best one can do is using a generic method to attack the DLP, the fastest of which remains the Pollard rho algorithm with rr-adding walks. For the first time, we rigorously analyze the Pollard rho method with rr-adding walks and prove a complexity bound that differs from the birthday bound observed in practice by a relatively small factor. There exist a multitude of open questions in genus 22 cryptography. In this case, the DLP is defined in large prime order subgroups of rational points that are situated on the Jacobian of a genus~22 curve defined over a large characteristic finite field. We focus on one main topic, namely we present a new efficient algorithm for computing cyclic isogenies between Jacobians. Comparing to previous work that computes non cyclic isogenies in genus~22, we need to restrict to certain cases of polarized abelian varieties with specific complex multiplication and real multiplication. The algorithm has multiple applications related to the structure of the isogeny graph in genus~22, including random self-reducibility of DLP. It helps support the widespread intuition of choosing \emph{any} curve in a class of curves that satisfy certain public and well studied security parameters. Another topic of interest is generating hyperelliptic curves for cryptographic applications via the CM method that is based on the numerical estimation of the rational Igusa class polynomials. A recent development relates the denominators of the Igusa class polynomials to counting ideal classes in non maximal real quadratic orders whose norm is not prime to the conductor. Besides counting, our new algorithm provides precise representations of such ideal classes for all real quadratic fields and is part of an implementation in Magma of the recent theoretic work in the literature on the topic of denominators

    Modular polynomials on Hilbert surfaces

    Get PDF
    International audienceWe describe an evaluation/interpolation approach to compute modular polynomials on a Hilbert surface, which parametrizes abelian surfaces with maximal real multiplication. Under some heuristics we obtain a quasi-linear algorithm. The corresponding modular polynomials are much smaller than the ones on the Siegel threefold. We explain how to compute even smaller polynomials by using pullbacks of theta functions to the Hilbert surface
    corecore