1,875 research outputs found

    Chromatic Polynomials for Families of Strip Graphs and their Asymptotic Limits

    Full text link
    We calculate the chromatic polynomials P((Gs)m,q)P((G_s)_m,q) and, from these, the asymptotic limiting functions W({Gs},q)=limnP(Gs,q)1/nW(\{G_s\},q)=\lim_{n \to \infty}P(G_s,q)^{1/n} for families of nn-vertex graphs (Gs)m(G_s)_m comprised of mm repeated subgraphs HH adjoined to an initial graph II. These calculations of W({Gs},q)W(\{G_s\},q) for infinitely long strips of varying widths yield important insights into properties of W(Λ,q)W(\Lambda,q) for two-dimensional lattices Λ\Lambda. In turn, these results connect with statistical mechanics, since W(Λ,q)W(\Lambda,q) is the ground state degeneracy of the qq-state Potts model on the lattice Λ\Lambda. For our calculations, we develop and use a generating function method, which enables us to determine both the chromatic polynomials of finite strip graphs and the resultant W({Gs},q)W(\{G_s\},q) function in the limit nn \to \infty. From this, we obtain the exact continuous locus of points B{\cal B} where W({Gs},q)W(\{G_s\},q) is nonanalytic in the complex qq plane. This locus is shown to consist of arcs which do not separate the qq plane into disconnected regions. Zeros of chromatic polynomials are computed for finite strips and compared with the exact locus of singularities B{\cal B}. We find that as the width of the infinitely long strips is increased, the arcs comprising B{\cal B} elongate and move toward each other, which enables one to understand the origin of closed regions that result for the (infinite) 2D lattice.Comment: 48 pages, Latex, 12 encapsulated postscript figures, to appear in Physica

    Chromatic Zeros On Hierarchical Lattices and Equidistribution on Parameter Space

    Get PDF
    Associated to any finite simple graph Γ\Gamma is the chromatic polynomial PΓ(q)P_\Gamma(q) whose complex zeroes are called the chromatic zeros of Γ\Gamma. A hierarchical lattice is a sequence of finite simple graphs {Γn}n=0\{\Gamma_n\}_{n=0}^\infty built recursively using a substitution rule expressed in terms of a generating graph. For each nn, let μn\mu_n denote the probability measure that assigns a Dirac measure to each chromatic zero of Γn\Gamma_n. Under a mild hypothesis on the generating graph, we prove that the sequence μn\mu_n converges to some measure μ\mu as nn tends to infinity. We call μ\mu the limiting measure of chromatic zeros associated to {Γn}n=0\{\Gamma_n\}_{n=0}^\infty. In the case of the Diamond Hierarchical Lattice we prove that the support of μ\mu has Hausdorff dimension two. The main techniques used come from holomorphic dynamics and more specifically the theories of activity/bifurcation currents and arithmetic dynamics. We prove a new equidistribution theorem that can be used to relate the chromatic zeros of a hierarchical lattice to the activity current of a particular marked point. We expect that this equidistribution theorem will have several other applications.Comment: To appear in Annales de l'Institut Henri Poincar\'e D. We have added considerably more background on activity currents and especially on the Dujardin-Favre classification of the passive locus. Exposition in the proof of the main theorem was improved. Comments welcome

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P-G(q) for the generalized theta graphs Theta((s.p)) are taken together, dense in the whole complex plane with the possible exception of the disc \q - l\ < l. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z(G)(q,upsilon) outside the disc \q + upsilon\ < \upsilon\. An immediate corollary is that the chromatic roots of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem oil the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P_G(q) for the generalized theta graphs \Theta^{(s,p)} are, taken together, dense in the whole complex plane with the possible exception of the disc |q-1| < 1. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z_G(q,v) outside the disc |q+v| < |v|. An immediate corollary is that the chromatic zeros of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem on the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof.Comment: LaTeX2e, 53 pages. Version 2 includes a new Appendix B. Version 3 adds a new Theorem 1.4 and a new Section 5, and makes several small improvements. To appear in Combinatorics, Probability & Computin

    Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions

    Get PDF
    I show that there exist universal constants C(r)<C(r) < \infty such that, for all loopless graphs GG of maximum degree r\le r, the zeros (real or complex) of the chromatic polynomial PG(q)P_G(q) lie in the disc q<C(r)|q| < C(r). Furthermore, C(r)7.963906...rC(r) \le 7.963906... r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q,ve)Z_G(q, {v_e}) in the complex antiferromagnetic regime 1+ve1|1 + v_e| \le 1. The proof is based on a transformation of the Whitney-Tutte-Fortuin-Kasteleyn representation of ZG(q,ve)Z_G(q, {v_e}) to a polymer gas, followed by verification of the Dobrushin-Koteck\'y-Preiss condition for nonvanishing of a polymer-model partition function. I also show that, for all loopless graphs GG of second-largest degree r\le r, the zeros of PG(q)P_G(q) lie in the disc q<C(r)+1|q| < C(r) + 1. Along the way, I give a simple proof of a generalized (multivariate) Brown-Colbourn conjecture on the zeros of the reliability polynomial for the special case of series-parallel graphs.Comment: 47 pages (LaTeX). Revised version contains slightly simplified proofs of Propositions 4.2 and 4.5. Version 3 fixes a silly error in my proof of Proposition 4.1, and adds related discussion. To appear in Combinatorics, Probability & Computin

    Ground State Entropy of the Potts Antiferromagnet on Cyclic Strip Graphs

    Full text link
    We present exact calculations of the zero-temperature partition function (chromatic polynomial) and the (exponent of the) ground-state entropy S0S_0 for the qq-state Potts antiferromagnet on families of cyclic and twisted cyclic (M\"obius) strip graphs composed of pp-sided polygons. Our results suggest a general rule concerning the maximal region in the complex qq plane to which one can analytically continue from the physical interval where S0>0S_0 > 0. The chromatic zeros and their accumulation set B{\cal B} exhibit the rather unusual property of including support for Re(q)<0Re(q) < 0 and provide further evidence for a relevant conjecture.Comment: 7 pages, Latex, 4 figs., J. Phys. A Lett., in pres
    corecore