17,063 research outputs found

    Relational aggression and adventure-based counselinga critical analysis of the literature

    Get PDF
    Includes bibliographical references

    Information Propagation Algorithms for Consensus Formation in Decentralized Multi-Agent Systems

    Get PDF
    Consensus occurs within a multi-agent system when every agent is in agreement about the value of some particular state. For example, the color of an LED, the position or magnitude of a vector, a rendezvous location, the most recent state of data within a database, or the identity of a leader are all states that agents might need to agree on in order to execute their tasking. The task of the decentralized consensus problem for multi-agent systems is to design an algorithm that enables agents to communicate and exchange information such that, in finite time, agents are able to form a consensus without the use of a centralized control mechanism. The primary goal of this research is to introduce and provide supporting evidence for Stochastic Local Observation/Gossip (SLOG) algorithms as a new class of solutions to the decentralized consensus problem for multi-agent systems that lack a centralized controller, with the additional constraints that agents act asynchronously, information is discrete, and all consensus options are equally preferable to all agents. Examples of where these constraints might apply include the spread of social norms and conventions in artificial populations, rendezvous among a set of specific locations, and task assignment. This goal is achieved through a combination of theory and experimentation. Information propagation process and an information propagation algorithm are derived by unifying the general structure of multiple existing solutions to the decentralized consensus problem. They are then used to define two classes of algorithms that spread information across a network and solve the decentralized consensus problem: buffered gossip algorithms and local observation algorithms. Buffered gossip algorithms generalize the behavior of many push-based solutions to the decentralized consensus problem. Local observation algorithms generalize the behavior of many pull-based solutions to the decentralized consensus problem. In the language of object oriented design, buffered gossip algorithms and local observation algorithms are abstract classes; information propagation processes are interfaces. SLOG algorithms combine the transmission mechanisms of buffered gossip algorithms and local observation algorithms into a single hybrid algorithm that is able to push and pull information within the local neighborhood. A common mathematical framework is constructed and used to determine the conditions under which each of these algorithms are guaranteed to produce a consensus, and thus solve the decentralized consensus problem. Finally, a series of simulation experiments are conducted to study the performance of SLOG algorithms. These experiments compare the average speed of consensus formation between buffered gossip algorithms, local observation algorithms, and SLOG algorithms over four distinct network topologies. Beyond the introduction of the SLOG algorithm, this research also contributes to the existing literature on the decentralized consensus problem by: specifying a theoretical framework that can be used to explore the consensus behavior of push-based and pull-based information propagation algorithms; using this framework to define buffered gossip algorithms and local observation algorithms as generalizations for existing solutions to the decentralized consensus problem; highlighting the similarities between consensus algorithms within control theory and opinion dynamics within computational sociology, and showing how these research areas can be successfully combined to create new and powerful algorithms; and providing an empirical comparison between multiple information propagation algorithms

    Image scoring in ad-hoc networks : an investigation on realistic settings

    Get PDF
    Encouraging cooperation in distributed Multi-Agent Systems (MAS) remains an open problem. Emergent application domains such as Mobile Ad-hoc Networks (MANETs) are characterised by constraints including sparse connectivity and a lack of direct interaction history. Image scoring, a simple model of reputation proposed by Nowak and Sigmund, exhibits low space and time complexity and promotes cooperation through indirect reciprocity, in which an agent can expect cooperation in the future without repeat interactions with the same partners. The low overheads of image scoring make it a promising technique for ad-hoc networking domains. However, the original investigation of Nowak and Sigmund is limited in that it (i) used a simple idealised setting, (ii) did not consider the effects of incomplete information on the mechanism’s efficacy, and (iii) did not consider the impact of the network topology connecting agents. We address these limitations by investigating more realistic values for the number of interactions agents engage in, and show that incomplete information can cause significant errors in decision making. As the proportion of incorrect decisions rises, the efficacy of image scoring falls and selfishness becomes more dominant. We evaluate image scoring on three different connection topologies: (i) completely connected, which closely approximates Nowak and Sigmund’s original setup, (ii) random, with each pair of nodes connected with a constant probability, and (iii) scale-free, which is known to model a number of real world environments including MANETs

    Dynamic Resource Management in Clouds: A Probabilistic Approach

    Full text link
    Dynamic resource management has become an active area of research in the Cloud Computing paradigm. Cost of resources varies significantly depending on configuration for using them. Hence efficient management of resources is of prime interest to both Cloud Providers and Cloud Users. In this work we suggest a probabilistic resource provisioning approach that can be exploited as the input of a dynamic resource management scheme. Using a Video on Demand use case to justify our claims, we propose an analytical model inspired from standard models developed for epidemiology spreading, to represent sudden and intense workload variations. We show that the resulting model verifies a Large Deviation Principle that statistically characterizes extreme rare events, such as the ones produced by "buzz/flash crowd effects" that may cause workload overflow in the VoD context. This analysis provides valuable insight on expectable abnormal behaviors of systems. We exploit the information obtained using the Large Deviation Principle for the proposed Video on Demand use-case for defining policies (Service Level Agreements). We believe these policies for elastic resource provisioning and usage may be of some interest to all stakeholders in the emerging context of cloud networkingComment: IEICE Transactions on Communications (2012). arXiv admin note: substantial text overlap with arXiv:1209.515

    Children’s Reporting of Peers’ Behaviour

    Get PDF
    This thesis describes a mixed-methods investigation of young children’s everyday social communication, focusing on tattling—the reporting of a peer’s negative behaviour to an audience. There are links between tattling and the development of gossip, and thus with the evolution of cooperative norms in humans. Tattling is a daily activity for many children, but has been little studied, especially in preschool contexts. \ud Quantitative sampling and participant observation are used to characterize behavioural reporting among 3- to 4-year-olds in 2 preschools in Belfast, Northern Ireland. Quantitative sampling shows that children in these populations are biased towards reporting negative actions by peers; that they are more likely to report actions of which they themselves are the victims; that they usually tell the truth; that their reports are rarely ignored by staff; and that there are relationships between frequency of tattling and measures of social dominance and relational aggression. Participant observation shows that tattling takes place in a complex social context; that children are generally aware of its effects; and that it is driven by a range of motivations, both self-oriented and group-oriented. \ud Two story recall experiments are described, aimed at testing the hypothesis that negative bias in children’s reports arises from the greater salience of negative behaviour. The experiments do not support this hypothesis, further strengthening the idea that children are acting out of strategic considerations when they report peers’ transgressions. Behavioural reporting in preschool contexts is compared with a sample of transcripts of children’s discourse recorded in 1970s England and stored in the CHILDES database. Examples of tattling and gossip are also found in the eHRAF ethnographic database. The thesis concludes with an interactionist model of the development of tattling and gossip, in which third-party mediation helps to integrate the affective and normative components of children’s developing moral systems.\u
    • 

    corecore