14,256 research outputs found

    On Convex Geometric Graphs with no k+1k+1 Pairwise Disjoint Edges

    Full text link
    A well-known result of Kupitz from 1982 asserts that the maximal number of edges in a convex geometric graph (CGG) on nn vertices that does not contain k+1k+1 pairwise disjoint edges is knkn (provided n>2kn>2k). For k=1k=1 and k=n/21k=n/2-1, the extremal examples are completely characterized. For all other values of kk, the structure of the extremal examples is far from known: their total number is unknown, and only a few classes of examples were presented, that are almost symmetric, consisting roughly of the knkn "longest possible" edges of CK(n)CK(n), the complete CGG of order nn. In order to understand further the structure of the extremal examples, we present a class of extremal examples that lie at the other end of the spectrum. Namely, we break the symmetry by requiring that, in addition, the graph admit an independent set that consists of qq consecutive vertices on the boundary of the convex hull. We show that such graphs exist as long as qn2kq \leq n-2k and that this value of qq is optimal. We generalize our discussion to the following question: what is the maximal possible number f(n,k,q)f(n,k,q) of edges in a CGG on nn vertices that does not contain k+1k+1 pairwise disjoint edges, and, in addition, admits an independent set that consists of qq consecutive vertices on the boundary of the convex hull? We provide a complete answer to this question, determining f(n,k,q)f(n,k,q) for all relevant values of n,kn,k and qq.Comment: 17 pages, 9 figure

    Notes on large angle crossing graphs

    Full text link
    A graph G is an a-angle crossing (aAC) graph if every pair of crossing edges in G intersect at an angle of at least a. The concept of right angle crossing (RAC) graphs (a=Pi/2) was recently introduced by Didimo et. al. It was shown that any RAC graph with n vertices has at most 4n-10 edges and that there are infinitely many values of n for which there exists a RAC graph with n vertices and 4n-10 edges. In this paper, we give upper and lower bounds for the number of edges in aAC graphs for all 0 < a < Pi/2

    Linear-Time Algorithms for Geometric Graphs with Sublinearly Many Edge Crossings

    Full text link
    We provide linear-time algorithms for geometric graphs with sublinearly many crossings. That is, we provide algorithms running in O(n) time on connected geometric graphs having n vertices and k crossings, where k is smaller than n by an iterated logarithmic factor. Specific problems we study include Voronoi diagrams and single-source shortest paths. Our algorithms all run in linear time in the standard comparison-based computational model; hence, we make no assumptions about the distribution or bit complexities of edge weights, nor do we utilize unusual bit-level operations on memory words. Instead, our algorithms are based on a planarization method that "zeroes in" on edge crossings, together with methods for extending planar separator decompositions to geometric graphs with sublinearly many crossings. Incidentally, our planarization algorithm also solves an open computational geometry problem of Chazelle for triangulating a self-intersecting polygonal chain having n segments and k crossings in linear time, for the case when k is sublinear in n by an iterated logarithmic factor.Comment: Expanded version of a paper appearing at the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA09

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    On the size of planarly connected crossing graphs

    Get PDF
    We prove that if an nn-vertex graph GG can be drawn in the plane such that each pair of crossing edges is independent and there is a crossing-free edge that connects their endpoints, then GG has O(n)O(n) edges. Graphs that admit such drawings are related to quasi-planar graphs and to maximal 11-planar and fan-planar graphs.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    corecore