1,129 research outputs found

    Persistence of instanton connections in chemical reactions with time dependent rates

    Get PDF
    The evolution of a system of chemical reactions can be studied, in the eikonal approximation, by means of a Hamiltonian dynamical system. The fixed points of this dynamical system represent the different states in which the chemical system can be found, and the connections among them represent instantons or optimal paths linking these states. We study the relation between the phase portrait of the Hamiltonian system representing a set of chemical reactions with constant rates and the corresponding system when these rates vary in time. We show that the topology of the phase space is robust for small time-dependent perturbations in concrete examples and state general results when possible. This robustness allows us to apply some of the conclusions on the qualitative behavior of the autonomous system to the time-dependent situation

    Time-Dependent Attractor for the Oscillon Equation

    Full text link
    We investigate the asymptotic behavior of the nonautonomous evolution problem generated by the Klein-Gordon equation in an expanding background, in one space dimension with periodic boundary conditions, with a nonlinear potential of arbitrary polynomial growth. After constructing a suitable dynamical framework to deal with the explicit time dependence of the energy of the solution, we establish the existence of a regular, time-dependent global attractor. The sections of the attractor at given times have finite fractal dimension.Comment: to appear in Discrete and Continuous Dynamical System

    Averaging of equations of viscoelasticity with singularly oscillating external forces

    Full text link
    Given ρ∈[0,1]\rho\in[0,1], we consider for Δ∈(0,1]\varepsilon\in(0,1] the nonautonomous viscoelastic equation with a singularly oscillating external force ∂ttu−Îș(0)Δu−∫0∞Îșâ€Č(s)Δu(t−s)ds+f(u)=g0(t)+Δ−ρg1(t/Δ) \partial_{tt} u-\kappa(0)\Delta u - \int_0^\infty \kappa'(s)\Delta u(t-s) d s +f(u)=g_{0}(t)+\varepsilon ^{-\rho }g_{1}(t/\varepsilon ) together with the {\it averaged} equation ∂ttu−Îș(0)Δu−∫0∞Îșâ€Č(s)Δu(t−s)ds+f(u)=g0(t). \partial_{tt} u-\kappa(0)\Delta u - \int_0^\infty \kappa'(s)\Delta u(t-s) d s +f(u)=g_{0}(t). Under suitable assumptions on the nonlinearity and on the external force, the related solution processes SΔ(t,τ)S_\varepsilon(t,\tau) acting on the natural weak energy space H{\mathcal H} are shown to possess uniform attractors AΔ{\mathcal A}^\varepsilon. Within the further assumption ρ<1\rho<1, the family AΔ{\mathcal A}^\varepsilon turns out to be bounded in H{\mathcal H}, uniformly with respect to Δ∈[0,1]\varepsilon\in[0,1]. The convergence of the attractors AΔ{\mathcal A}^\varepsilon to the attractor A0{\mathcal A}^0 of the averaged equation as Δ→0\varepsilon\to 0 is also established

    Climate dynamics and fluid mechanics: Natural variability and related uncertainties

    Full text link
    The purpose of this review-and-research paper is twofold: (i) to review the role played in climate dynamics by fluid-dynamical models; and (ii) to contribute to the understanding and reduction of the uncertainties in future climate-change projections. To illustrate the first point, we focus on the large-scale, wind-driven flow of the mid-latitude oceans which contribute in a crucial way to Earth's climate, and to changes therein. We study the low-frequency variability (LFV) of the wind-driven, double-gyre circulation in mid-latitude ocean basins, via the bifurcation sequence that leads from steady states through periodic solutions and on to the chaotic, irregular flows documented in the observations. This sequence involves local, pitchfork and Hopf bifurcations, as well as global, homoclinic ones. The natural climate variability induced by the LFV of the ocean circulation is but one of the causes of uncertainties in climate projections. Another major cause of such uncertainties could reside in the structural instability in the topological sense, of the equations governing climate dynamics, including but not restricted to those of atmospheric and ocean dynamics. We propose a novel approach to understand, and possibly reduce, these uncertainties, based on the concepts and methods of random dynamical systems theory. As a very first step, we study the effect of noise on the topological classes of the Arnol'd family of circle maps, a paradigmatic model of frequency locking as occurring in the nonlinear interactions between the El Nino-Southern Oscillations (ENSO) and the seasonal cycle. It is shown that the maps' fine-grained resonant landscape is smoothed by the noise, thus permitting their coarse-grained classification. This result is consistent with stabilizing effects of stochastic parametrization obtained in modeling of ENSO phenomenon via some general circulation models.Comment: Invited survey paper for Special Issue on The Euler Equations: 250 Years On, in Physica D: Nonlinear phenomen

    Time Dependent Saddle Node Bifurcation: Breaking Time and the Point of No Return in a Non-Autonomous Model of Critical Transitions

    Full text link
    There is a growing awareness that catastrophic phenomena in biology and medicine can be mathematically represented in terms of saddle-node bifurcations. In particular, the term `tipping', or critical transition has in recent years entered the discourse of the general public in relation to ecology, medicine, and public health. The saddle-node bifurcation and its associated theory of catastrophe as put forth by Thom and Zeeman has seen applications in a wide range of fields including molecular biophysics, mesoscopic physics, and climate science. In this paper, we investigate a simple model of a non-autonomous system with a time-dependent parameter p(τ)p(\tau) and its corresponding `dynamic' (time-dependent) saddle-node bifurcation by the modern theory of non-autonomous dynamical systems. We show that the actual point of no return for a system undergoing tipping can be significantly delayed in comparison to the {\em breaking time} τ^\hat{\tau} at which the corresponding autonomous system with a time-independent parameter pa=p(τ^)p_{a}= p(\hat{\tau}) undergoes a bifurcation. A dimensionless parameter α=λp03V−2\alpha=\lambda p_0^3V^{-2} is introduced, in which λ\lambda is the curvature of the autonomous saddle-node bifurcation according to parameter p(τ)p(\tau), which has an initial value of p0p_{0} and a constant rate of change VV. We find that the breaking time τ^\hat{\tau} is always less than the actual point of no return τ∗\tau^* after which the critical transition is irreversible; specifically, the relation τ∗−τ^≃2.338(λV)−13\tau^*-\hat{\tau}\simeq 2.338(\lambda V)^{-\frac{1}{3}} is analytically obtained. For a system with a small λV\lambda V, there exists a significant window of opportunity (τ^,τ∗)(\hat{\tau},\tau^*) during which rapid reversal of the environment can save the system from catastrophe
    • 

    corecore