16,541 research outputs found

    Neptune at Summer Solstice: Zonal Mean Temperatures from Ground-Based Observations 2003-2007

    Full text link
    Imaging and spectroscopy of Neptune's thermal infrared emission is used to assess seasonal changes in Neptune's zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is ±\pm5 K at 1 mbar and ±\pm3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane). At low and midlatitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 {\mu}m mapping of tropospheric temperatures and para-hydrogen disequilibrium suggests a symmetric meridional circulation with cold air rising at mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the equator and poles (super-equilibrium para-H2 conditions). The most significant atmospheric changes are associated with the polar vortex (absent in 1989).Comment: 35 pages, 19 figures. Accepted for publication in Icaru

    Comparison of Solar Fine Structure Observed Simultaneously in Ly-{\alpha} and Mg II h

    Full text link
    The Chromospheric Lyman Alpha Spectropolarimeter (CLASP) observed the Sun in H I Lyman-{\alpha} during a suborbital rocket flight on September 3, 2015. The Interface Region Imaging Telescope (IRIS) coordinated with the CLASP observations and recorded nearly simultaneous and co-spatial observations in the Mg II h&k lines. The Mg II h and Ly-{\alpha} lines are important transitions, energetically and diagnostically, in the chromosphere. The canonical solar atmosphere model predicts that these lines form in close proximity to each other and so we expect that the line profiles will exhibit similar variability. In this analysis, we present these coordinated observations and discuss how the two profiles compare over a region of quiet sun at viewing angles that approach the limb. In addition to the observations, we synthesize both line profiles using a 3D radiation-MHD simulation. In the observations, we find that the peak width and the peak intensities are well correlated between the lines. For the simulation, we do not find the same relationship. We have attempted to mitigate the instrumental differences between IRIS and CLASP and to reproduce the instrumental factors in the synthetic profiles. The model indicates that formation heights of the lines differ in a somewhat regular fashion related to magnetic geometry. This variation explains to some degree the lack of correlation, observed and synthesized, between Mg II and Ly-{\alpha}. Our analysis will aid in the definition of future observatories that aim to link dynamics in the chromosphere and transition region.Comment: Accepted by Ap

    Evidence of Non-Thermal Particles in Coronal Loops Heated Impulsively by Nanoflares

    Full text link
    The physical processes causing energy exchange between the Sun's hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High resolution observations with the Interface Region Imaging Spectrograph (IRIS) reveal rapid variability (about 20 to 60 seconds) of intensity and velocity on small spatial scales at the footpoints of hot dynamic coronal loops. The observations are consistent with numerical simulations of heating by beams of non-thermal electrons, which are generated in small impulsive heating events called "coronal nanoflares". The accelerated electrons deposit a sizable fraction of their energy in the chromosphere and TR. Our analysis provides tight constraints on the properties of such electron beams and new diagnostics for their presence in the nonflaring corona.Comment: Published in Science on October 17: http://www.sciencemag.org/content/346/6207/1255724 . 26 pages, 10 figures. Movies are available at: http://www.lmsal.com/~ptesta/iris_science_mov

    Resonant Absorption of Transverse Oscillations and Associated Heating in a Solar Prominence. I- Observational aspects

    Get PDF
    Transverse magnetohydrodynamic (MHD) waves have been shown to be ubiquitous in the solar atmosphere and can in principle carry sufficient energy to generate and maintain the Sun's million-degree outer atmosphere or corona. However, direct evidence of the dissipation process of these waves and subsequent heating has not yet been directly observed. Here we report on high spatial, temporal, and spectral resolution observations of a solar prominence that show a compelling signature of so-called resonant absorption, a long hypothesized mechanism to efficiently convert and dissipate transverse wave energy into heat. Aside from coherence in the transverse direction, our observations show telltale phase differences around 180 degrees between transverse motions in the plane-of-sky and line-of-sight velocities of the oscillating fine structures or threads, and also suggest significant heating from chromospheric to higher temperatures. Comparison with advanced numerical simulations support a scenario in which transverse oscillations trigger a Kelvin-Helmholtz instability (KHI) at the boundaries of oscillating threads via resonant absorption. This instability leads to numerous thin current sheets in which wave energy is dissipated and plasma is heated. Our results provide direct evidence for wave-related heating in action, one of the candidate coronal heating mechanisms.Comment: 28 pages, 9 figures, accepted for publication in ApJ. Part II by Patrick Antolin et al. will appear soo
    • …
    corecore