899 research outputs found

    Coordinated design of coding and modulation systems

    Get PDF
    The joint optimization of the coding and modulation systems employed in telemetry systems was investigated. Emphasis was placed on formulating inner and outer coding standards used by the Goddard Spaceflight Center. Convolutional codes were found that are nearly optimum for use with Viterbi decoding in the inner coding of concatenated coding systems. A convolutional code, the unit-memory code, was discovered and is ideal for inner system usage because of its byte-oriented structure. Simulations of sequential decoding on the deep-space channel were carried out to compare directly various convolutional codes that are proposed for use in deep-space systems

    Multiplicatively Repeated Non-Binary LDPC Codes

    Full text link
    We propose non-binary LDPC codes concatenated with multiplicative repetition codes. By multiplicatively repeating the (2,3)-regular non-binary LDPC mother code of rate 1/3, we construct rate-compatible codes of lower rates 1/6, 1/9, 1/12,... Surprisingly, such simple low-rate non-binary LDPC codes outperform the best low-rate binary LDPC codes so far. Moreover, we propose the decoding algorithm for the proposed codes, which can be decoded with almost the same computational complexity as that of the mother code.Comment: To appear in IEEE Transactions on Information Theor

    Distributed Turbo-Like Codes for Multi-User Cooperative Relay Networks

    Full text link
    In this paper, a distributed turbo-like coding scheme for wireless networks with relays is proposed. We consider a scenario where multiple sources communicate with a single destination with the help of a relay. The proposed scheme can be regarded as of the decode-and-forward type. The relay decodes the information from the sources and it properly combines and re-encodes them to generate some extra redundancy, which is transmitted to the destination. The amount of redundancy generated by the relay can simply be adjusted according to requirements in terms of performance, throughput and/or power. At the destination, decoding of the information of all sources is performed jointly exploiting the redundancy provided by the relay in an iterative fashion. The overall communication network can be viewed as a serially concatenated code. The proposed distributed scheme achieves significant performance gains with respect to the non-cooperation system, even for a very large number of users. Furthermore, it presents a high flexibility in terms of code rate, block length and number of users.Comment: Submitted to ICC 201

    Order Statistics Based List Decoding Techniques for Linear Binary Block Codes

    Full text link
    The order statistics based list decoding techniques for linear binary block codes of small to medium block length are investigated. The construction of the list of the test error patterns is considered. The original order statistics decoding is generalized by assuming segmentation of the most reliable independent positions of the received bits. The segmentation is shown to overcome several drawbacks of the original order statistics decoding. The complexity of the order statistics based decoding is further reduced by assuming a partial ordering of the received bits in order to avoid the complex Gauss elimination. The probability of the test error patterns in the decoding list is derived. The bit error rate performance and the decoding complexity trade-off of the proposed decoding algorithms is studied by computer simulations. Numerical examples show that, in some cases, the proposed decoding schemes are superior to the original order statistics decoding in terms of both the bit error rate performance as well as the decoding complexity.Comment: 17 pages, 2 tables, 6 figures, submitted to IEEE Transactions on Information Theor

    Optimal Thresholds for GMD Decoding with (L+1)/L-extended Bounded Distance Decoders

    Full text link
    We investigate threshold-based multi-trial decoding of concatenated codes with an inner Maximum-Likelihood decoder and an outer error/erasure (L+1)/L-extended Bounded Distance decoder, i.e. a decoder which corrects e errors and t erasures if e(L+1)/L + t <= d - 1, where d is the minimum distance of the outer code and L is a positive integer. This is a generalization of Forney's GMD decoding, which was considered only for L = 1, i.e. outer Bounded Minimum Distance decoding. One important example for (L+1)/L-extended Bounded Distance decoders is decoding of L-Interleaved Reed-Solomon codes. Our main contribution is a threshold location formula, which allows to optimally erase unreliable inner decoding results, for a given number of decoding trials and parameter L. Thereby, the term optimal means that the residual codeword error probability of the concatenated code is minimized. We give an estimation of this probability for any number of decoding trials.Comment: Accepted for the 2010 IEEE International Symposium on Information Theory, Austin, TX, USA, June 13 - 18, 2010. 5 pages, 2 figure
    corecore