254 research outputs found

    Characterizations of the Suzuki tower near polygons

    Get PDF
    In recent work, we constructed a new near octagon G\mathcal{G} from certain involutions of the finite simple group G2(4)G_2(4) and showed a correspondence between the Suzuki tower of finite simple groups, L3(2)<U3(3)<J2<G2(4)<SuzL_3(2) < U_3(3) < J_2 < G_2(4) < Suz, and the tower of near polygons, H(2,1)H(2)DHJG\mathrm{H}(2,1) \subset \mathrm{H}(2)^D \subset \mathsf{HJ} \subset \mathcal{G}. Here we characterize each of these near polygons (except for the first one) as the unique near polygon of the given order and diameter containing an isometrically embedded copy of the previous near polygon of the tower. In particular, our characterization of the Hall-Janko near octagon HJ\mathsf{HJ} is similar to an earlier characterization due to Cohen and Tits who proved that it is the unique regular near octagon with parameters (2,4;0,3)(2, 4; 0, 3), but instead of regularity we assume existence of an isometrically embedded dual split Cayley hexagon, H(2)D\mathrm{H}(2)^D. We also give a complete classification of near hexagons of order (2,2)(2, 2) and use it to prove the uniqueness result for H(2)D\mathrm{H}(2)^D.Comment: 20 pages; some revisions based on referee reports; added more references; added remarks 1.4 and 1.5; corrected typos; improved the overall expositio

    Zoology of Atlas-groups: dessins d'enfants, finite geometries and quantum commutation

    Full text link
    Every finite simple group P can be generated by two of its elements. Pairs of generators for P are available in the Atlas of finite group representations as (not neccessarily minimal) permutation representations P. It is unusual but significant to recognize that a P is a Grothendieck's dessin d'enfant D and that most standard graphs and finite geometries G-such as near polygons and their generalizations-are stabilized by a D. In our paper, tripods P -- D -- G of rank larger than two, corresponding to simple groups, are organized into classes, e.g. symplectic, unitary, sporadic, etc (as in the Atlas). An exhaustive search and characterization of non-trivial point-line configurations defined from small index representations of simple groups is performed, with the goal to recognize their quantum physical significance. All the defined geometries G' s have a contextuality parameter close to its maximal value 1.Comment: 19 page

    Dense near octagons with four points on each line, III

    Get PDF
    This is the third paper dealing with the classification of the dense near octagons of order (3, t). Using the partial classification of the valuations of the possible hexes obtained in [12], we are able to show that almost all such near octagons admit a big hex. Combining this with the results in [11], where we classified the dense near octagons of order (3, t) with a big hex, we get an incomplete classification for the dense near octagons of order (3, t): There are 28 known examples and a few open cases. For each open case, we have a rather detailed description of the structure of the near octagons involved

    Geometric contextuality from the Maclachlan-Martin Kleinian groups

    Full text link
    There are contextual sets of multiple qubits whose commutation is parametrized thanks to the coset geometry G\mathcal{G} of a subgroup HH of the two-generator free group G=x,yG=\left\langle x,y\right\rangle. One defines geometric contextuality from the discrepancy between the commutativity of cosets on G\mathcal{G} and that of quantum observables.It is shown in this paper that Kleinian subgroups K=f,gK=\left\langle f,g\right\rangle that are non-compact, arithmetic, and generated by two elliptic isometries ff and gg (the Martin-Maclachlan classification), are appropriate contextuality filters. Standard contextual geometries such as some thin generalized polygons (starting with Mermin's 3×33 \times 3 grid) belong to this frame. The Bianchi groups PSL(2,O_d)PSL(2,O\_d), d{1,3}d \in \{1,3\} defined over the imaginary quadratic field O_d=Q(d)O\_d=\mathbb{Q}(\sqrt{-d}) play a special role

    A new near octagon and the Suzuki tower

    Get PDF
    We construct and study a new near octagon of order (2,10)(2,10) which has its full automorphism group isomorphic to the group G2(4):2\mathrm{G}_2(4){:}2 and which contains 416416 copies of the Hall-Janko near octagon as full subgeometries. Using this near octagon and its substructures we give geometric constructions of the G2(4)\mathrm{G}_2(4)-graph and the Suzuki graph, both of which are strongly regular graphs contained in the Suzuki tower. As a subgeometry of this octagon we have discovered another new near octagon, whose order is (2,4)(2,4).Comment: 24 pages, revised version with added remarks and reference

    On semi-finite hexagons of order (2,t)(2, t) containing a subhexagon

    Get PDF
    The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi-finite thick generalized polygons. We show here that no semi-finite generalized hexagon of order (2,t)(2,t) can have a subhexagon HH of order 22. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2)H(2) or its point-line dual HD(2)H^D(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon S\mathcal{S} of order (2,t)(2,t) which contains a generalized hexagon HH of order 22 as an isometrically embedded subgeometry must be finite. Moreover, if HHD(2)H \cong H^D(2) then S\mathcal{S} must also be a generalized hexagon, and consequently isomorphic to either HD(2)H^D(2) or the dual twisted triality hexagon T(2,8)T(2,8).Comment: 21 pages; new corrected proofs of Lemmas 4.6 and 4.7; earlier proofs worked for generalized hexagons but not near hexagon

    Some contributions to incidence geometry and the polynomial method

    Get PDF

    A near octagon associated with hj

    Get PDF
    corecore