1,991 research outputs found

    Quadrature by Expansion: A New Method for the Evaluation of Layer Potentials

    Full text link
    Integral equation methods for the solution of partial differential equations, when coupled with suitable fast algorithms, yield geometrically flexible, asymptotically optimal and well-conditioned schemes in either interior or exterior domains. The practical application of these methods, however, requires the accurate evaluation of boundary integrals with singular, weakly singular or nearly singular kernels. Historically, these issues have been handled either by low-order product integration rules (computed semi-analytically), by singularity subtraction/cancellation, by kernel regularization and asymptotic analysis, or by the construction of special purpose "generalized Gaussian quadrature" rules. In this paper, we present a systematic, high-order approach that works for any singularity (including hypersingular kernels), based only on the assumption that the field induced by the integral operator is locally smooth when restricted to either the interior or the exterior. Discontinuities in the field across the boundary are permitted. The scheme, denoted QBX (quadrature by expansion), is easy to implement and compatible with fast hierarchical algorithms such as the fast multipole method. We include accuracy tests for a variety of integral operators in two dimensions on smooth and corner domains

    On the computation of Gaussian quadrature rules for Chebyshev sets of linearly independent functions

    Get PDF
    We consider the computation of quadrature rules that are exact for a Chebyshev set of linearly independent functions on an interval [a,b][a,b]. A general theory of Chebyshev sets guarantees the existence of rules with a Gaussian property, in the sense that 2l2l basis functions can be integrated exactly with just ll points and weights. Moreover, all weights are positive and the points lie inside the interval [a,b][a,b]. However, the points are not the roots of an orthogonal polynomial or any other known special function as in the case of regular Gaussian quadrature. The rules are characterized by a nonlinear system of equations, and earlier numerical methods have mostly focused on finding suitable starting values for a Newton iteration to solve this system. In this paper we describe an alternative scheme that is robust and generally applicable for so-called complete Chebyshev sets. These are ordered Chebyshev sets where the first kk elements also form a Chebyshev set for each kk. The points of the quadrature rule are computed one by one, increasing exactness of the rule in each step. Each step reduces to finding the unique root of a univariate and monotonic function. As such, the scheme of this paper is guaranteed to succeed. The quadrature rules are of interest for integrals with non-smooth integrands that are not well approximated by polynomials

    Machine Precision Evaluation of Singular and Nearly Singular Potential Integrals by Use of Gauss Quadrature Formulas for Rational Functions

    Get PDF
    A new technique for machine precision evaluation of singular and nearly singular potential integrals with 1/R singularities is presented. The numerical quadrature scheme is based on a new rational expression for the integrands, obtained by a cancellation procedure. In particular, by using library routines for Gauss quadrature of rational functions readily available in the literature, this new expression permits the exact numerical integration of singular static potentials associated with polynomial source distributions. The rules to achieve the desired numerical accuracy for singular and nearly singular static and dynamic potential integrals are presented and discussed, and several numerical examples are provide

    Planewave density interpolation methods for 3D Helmholtz boundary integral equations

    Full text link
    This paper introduces planewave density interpolation methods for the regularization of weakly singular, strongly singular, hypersingular and nearly singular integral kernels present in 3D Helmholtz surface layer potentials and associated integral operators. Relying on Green's third identity and pointwise interpolation of density functions in the form of planewaves, these methods allow layer potentials and integral operators to be expressed in terms of integrand functions that remain smooth (at least bounded) regardless the location of the target point relative to the surface sources. Common challenging integrals that arise in both Nystr\"om and boundary element discretization of boundary integral equation, can then be numerically evaluated by standard quadrature rules that are irrespective of the kernel singularity. Closed-form and purely numerical planewave density interpolation procedures are presented in this paper, which are used in conjunction with Chebyshev-based Nystr\"om and Galerkin boundary element methods. A variety of numerical examples---including problems of acoustic scattering involving multiple touching and even intersecting obstacles, demonstrate the capabilities of the proposed technique
    • 

    corecore