16,424 research outputs found

    The equivariant Minkowski problem in Minkowski space

    Get PDF
    The classical Minkowski problem in Minkowski space asks, for a positive function ϕ\phi on Hd\mathbb{H}^d, for a convex set KK in Minkowski space with C2C^2 space-like boundary SS, such that ϕ(η)1\phi(\eta)^{-1} is the Gauss--Kronecker curvature at the point with normal η\eta. Analogously to the Euclidean case, it is possible to formulate a weak version of this problem: given a Radon measure μ\mu on Hd\mathbb{H}^d the generalized Minkowski problem in Minkowski space asks for a convex subset KK such that the area measure of KK is μ\mu. In the present paper we look at an equivariant version of the problem: given a uniform lattice Γ\Gamma of isometries of Hd\mathbb{H}^d, given a Γ\Gamma invariant Radon measure μ\mu, given a isometry group Γτ\Gamma_{\tau} of Minkowski space, with Γ\Gamma as linear part, there exists a unique convex set with area measure μ\mu, invariant under the action of Γτ\Gamma_{\tau}. The proof uses a functional which is the covolume associated to every invariant convex set. This result translates as a solution of the Minkowski problem in flat space times with compact hyperbolic Cauchy surface. The uniqueness part, as well as regularity results, follow from properties of the Monge--Amp\`ere equation. The existence part can be translated as an existence result for Monge--Amp\`ere equation. The regular version was proved by T.~Barbot, F.~B\'eguin and A.~Zeghib for d=2d=2 and by V.~Oliker and U.~Simon for Γτ=Γ\Gamma_{\tau}=\Gamma. Our method is totally different. Moreover, we show that those cases are very specific: in general, there is no smooth Γτ\Gamma_\tau-invariant surface of constant Gauss-Kronecker curvature equal to 11

    Standard finite elements for the numerical resolution of the elliptic Monge-Ampere equation: Aleksandrov solutions

    Get PDF
    We prove a convergence result for a natural discretization of the Dirichlet problem of the elliptic Monge-Ampere equation using finite dimensional spaces of piecewise polynomial C0 or C1 functions. Standard discretizations of the type considered in this paper have been previous analyzed in the case the equation has a smooth solution and numerous numerical evidence of convergence were given in the case of non smooth solutions. Our convergence result is valid for non smooth solutions, is given in the setting of Aleksandrov solutions, and consists in discretizing the equation in a subdomain with the boundary data used as an approximation of the solution in the remaining part of the domain. Our result gives a theoretical validation for the use of a non monotone finite element method for the Monge-Amp\`ere equation

    On the differential structure of metric measure spaces and applications

    Full text link
    The main goals of this paper are: i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Borel, non negative and locally finite. ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like Δg=μ\Delta g=\mu, where gg is a function and μ\mu is a measure. iii) To show that on spaces with Ricci curvature bounded from below and dimension bounded from above, the Laplacian of the distance function is always a measure and that this measure has the standard sharp comparison properties. This result requires an additional assumption on the space, which reduces to strict convexity of the norm in the case of smooth Finsler structures and is always satisfied on spaces with linear Laplacian, a situation which is analyzed in detail.Comment: Clarified the dependence on the Sobolev exponent pp of various objects built in the paper. Updated bibliography. Corrected typo

    Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities

    Get PDF
    Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are finite on the positive and infinite on the negative numbers, strictly convex but not necessarily differentiable. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The effective domain of the value function is described by a conic core, a modification of the earlier concept of convex core. Minimizers and generalized minimizers are explicitly constructed from solutions of modified dual problems, not assuming the primal constraint qualification. A generalized Pythagorean identity is presented using Bregman distance and a correction term for lack of essential smoothness in integrands. Results are applied to minimization of Bregman distances. Existence of a generalized dual solution is established whenever the dual value is finite, assuming the dual constraint qualification. Examples of `irregular' situations are included, pointing to the limitations of generality of certain key results

    Data depth and floating body

    Full text link
    Little known relations of the renown concept of the halfspace depth for multivariate data with notions from convex and affine geometry are discussed. Halfspace depth may be regarded as a measure of symmetry for random vectors. As such, the depth stands as a generalization of a measure of symmetry for convex sets, well studied in geometry. Under a mild assumption, the upper level sets of the halfspace depth coincide with the convex floating bodies used in the definition of the affine surface area for convex bodies in Euclidean spaces. These connections enable us to partially resolve some persistent open problems regarding theoretical properties of the depth

    Fractal Weyl law for open quantum chaotic maps

    Get PDF
    We study the semiclassical quantization of Poincar\'e maps arising in scattering problems with fractal hyperbolic trapped sets. The main application is the proof of a fractal Weyl upper bound for the number of resonances/scattering poles in small domains near the real axis. This result encompasses the case of several convex (hard) obstacles satisfying a no-eclipse condition.Comment: 69 pages, 7 figure

    Regularized Optimal Transport and the Rot Mover's Distance

    Full text link
    This paper presents a unified framework for smooth convex regularization of discrete optimal transport problems. In this context, the regularized optimal transport turns out to be equivalent to a matrix nearness problem with respect to Bregman divergences. Our framework thus naturally generalizes a previously proposed regularization based on the Boltzmann-Shannon entropy related to the Kullback-Leibler divergence, and solved with the Sinkhorn-Knopp algorithm. We call the regularized optimal transport distance the rot mover's distance in reference to the classical earth mover's distance. We develop two generic schemes that we respectively call the alternate scaling algorithm and the non-negative alternate scaling algorithm, to compute efficiently the regularized optimal plans depending on whether the domain of the regularizer lies within the non-negative orthant or not. These schemes are based on Dykstra's algorithm with alternate Bregman projections, and further exploit the Newton-Raphson method when applied to separable divergences. We enhance the separable case with a sparse extension to deal with high data dimensions. We also instantiate our proposed framework and discuss the inherent specificities for well-known regularizers and statistical divergences in the machine learning and information geometry communities. Finally, we demonstrate the merits of our methods with experiments using synthetic data to illustrate the effect of different regularizers and penalties on the solutions, as well as real-world data for a pattern recognition application to audio scene classification
    corecore