7,149 research outputs found

    On Code Design for Interference Channels

    Get PDF
    abstract: There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed. Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    On the Corner Points of the Capacity Region of a Two-User Gaussian Interference Channel

    Full text link
    This work considers the corner points of the capacity region of a two-user Gaussian interference channel (GIC). In a two-user GIC, the rate pairs where one user transmits its data at the single-user capacity (without interference), and the other at the largest rate for which reliable communication is still possible are called corner points. This paper relies on existing outer bounds on the capacity region of a two-user GIC that are used to derive informative bounds on the corner points of the capacity region. The new bounds refer to a weak two-user GIC (i.e., when both cross-link gains in standard form are positive and below 1), and a refinement of these bounds is obtained for the case where the transmission rate of one user is within ε>0\varepsilon > 0 of the single-user capacity. The bounds on the corner points are asymptotically tight as the transmitted powers tend to infinity, and they are also useful for the case of moderate SNR and INR. Upper and lower bounds on the gap (denoted by Δ\Delta) between the sum-rate and the maximal achievable total rate at the two corner points are derived. This is followed by an asymptotic analysis analogous to the study of the generalized degrees of freedom (where the SNR and INR scalings are coupled such that log(INR)log(SNR)=α0\frac{\log(\text{INR})}{\log(\text{SNR})} = \alpha \geq 0), leading to an asymptotic characterization of this gap which is exact for the whole range of α\alpha. The upper and lower bounds on Δ\Delta are asymptotically tight in the sense that they achieve the exact asymptotic characterization. Improved bounds on Δ\Delta are derived for finite SNR and INR, and their improved tightness is exemplified numerically.Comment: Submitted to the IEEE Trans. on Information Theory in July 17, 2014, and revised in April 5, 2015. Presented in part at Allerton 2013, and also presented in part with improved results at ISIT 201

    Orthogonal Codes for Robust Low-Cost Communication

    Full text link
    Orthogonal coding schemes, known to asymptotically achieve the capacity per unit cost (CPUC) for single-user ergodic memoryless channels with a zero-cost input symbol, are investigated for single-user compound memoryless channels, which exhibit uncertainties in their input-output statistical relationships. A minimax formulation is adopted to attain robustness. First, a class of achievable rates per unit cost (ARPUC) is derived, and its utility is demonstrated through several representative case studies. Second, when the uncertainty set of channel transition statistics satisfies a convexity property, optimization is performed over the class of ARPUC through utilizing results of minimax robustness. The resulting CPUC lower bound indicates the ultimate performance of the orthogonal coding scheme, and coincides with the CPUC under certain restrictive conditions. Finally, still under the convexity property, it is shown that the CPUC can generally be achieved, through utilizing a so-called mixed strategy in which an orthogonal code contains an appropriate composition of different nonzero-cost input symbols.Comment: 2nd revision, accepted for publicatio
    corecore