175 research outputs found

    Gromov-Hausdorff convergence of state spaces for spectral truncations

    Full text link
    We study the convergence aspects of the metric on spectral truncations of geometry. We find general conditions on sequences of operator system spectral triples that allows one to prove a result on Gromov-Hausdorff convergence of the corresponding state spaces when equipped with Connes' distance formula. We exemplify this result for spectral truncations of the circle, Fourier series on the circle with a finite number of Fourier modes, and matrix algebras that converge to the sphere.Comment: 15 pages, 3 figures (published version

    Fitting aggregation operators to data

    Full text link
    Theoretical advances in modelling aggregation of information produced a wide range of aggregation operators, applicable to almost every practical problem. The most important classes of aggregation operators include triangular norms, uninorms, generalised means and OWA operators.With such a variety, an important practical problem has emerged: how to fit the parameters/ weights of these families of aggregation operators to observed data? How to estimate quantitatively whether a given class of operators is suitable as a model in a given practical setting? Aggregation operators are rather special classes of functions, and thus they require specialised regression techniques, which would enforce important theoretical properties, like commutativity or associativity. My presentation will address this issue in detail, and will discuss various regression methods applicable specifically to t-norms, uninorms and generalised means. I will also demonstrate software implementing these regression techniques, which would allow practitioners to paste their data and obtain optimal parameters of the chosen family of operators.<br /

    Computational Optimizations for Machine Learning

    Get PDF
    The present book contains the 10 articles finally accepted for publication in the Special Issue “Computational Optimizations for Machine Learning” of the MDPI journal Mathematics, which cover a wide range of topics connected to the theory and applications of machine learning, neural networks and artificial intelligence. These topics include, among others, various types of machine learning classes, such as supervised, unsupervised and reinforcement learning, deep neural networks, convolutional neural networks, GANs, decision trees, linear regression, SVM, K-means clustering, Q-learning, temporal difference, deep adversarial networks and more. It is hoped that the book will be interesting and useful to those developing mathematical algorithms and applications in the domain of artificial intelligence and machine learning as well as for those having the appropriate mathematical background and willing to become familiar with recent advances of machine learning computational optimization mathematics, which has nowadays permeated into almost all sectors of human life and activity

    Mathematical Fuzzy Logic in the Emerging Fields of Engineering, Finance, and Computer Sciences

    Get PDF
    Mathematical fuzzy logic (MFL) specifically targets many-valued logic and has significantly contributed to the logical foundations of fuzzy set theory (FST). It explores the computational and philosophical rationale behind the uncertainty due to imprecision in the backdrop of traditional mathematical logic. Since uncertainty is present in almost every real-world application, it is essential to develop novel approaches and tools for efficient processing. This book is the collection of the publications in the Special Issue “Mathematical Fuzzy Logic in the Emerging Fields of Engineering, Finance, and Computer Sciences”, which aims to cover theoretical and practical aspects of MFL and FST. Specifically, this book addresses several problems, such as:- Industrial optimization problems- Multi-criteria decision-making- Financial forecasting problems- Image processing- Educational data mining- Explainable artificial intelligence, etc

    Set-Valued Analysis

    Get PDF
    This Special Issue contains eight original papers with a high impact in various domains of set-valued analysis. Set-valued analysis has made remarkable progress in the last 70 years, enriching itself continuously with new concepts, important results, and special applications. Different problems arising in the theory of control, economics, game theory, decision making, nonlinear programming, biomathematics, and statistics have strengthened the theoretical base and the specific techniques of set-valued analysis. The consistency of its theoretical approach and the multitude of its applications have transformed set-valued analysis into a reference field of modern mathematics, which attracts an impressive number of researchers

    Weakly monotonic averaging with application to image processing

    Full text link

    A kaleidoscopic view of multivariate copulas and quasi-copulas

    Get PDF

    Full Issue

    Get PDF
    • …
    corecore