229 research outputs found

    On Fully Dynamic Graph Sparsifiers

    No full text
    We initiate the study of dynamic algorithms for graph sparsification problems and obtain fully dynamic algorithms, allowing both edge insertions and edge deletions, that take polylogarithmic time after each update in the graph. Our three main results are as follows. First, we give a fully dynamic algorithm for maintaining a (1±ϵ) (1 \pm \epsilon) -spectral sparsifier with amortized update time poly(logn,ϵ1)poly(\log{n}, \epsilon^{-1}). Second, we give a fully dynamic algorithm for maintaining a (1±ϵ) (1 \pm \epsilon) -cut sparsifier with \emph{worst-case} update time poly(logn,ϵ1)poly(\log{n}, \epsilon^{-1}). Both sparsifiers have size npoly(logn,ϵ1) n \cdot poly(\log{n}, \epsilon^{-1}). Third, we apply our dynamic sparsifier algorithm to obtain a fully dynamic algorithm for maintaining a (1+ϵ)(1 + \epsilon)-approximation to the value of the maximum flow in an unweighted, undirected, bipartite graph with amortized update time poly(logn,ϵ1)poly(\log{n}, \epsilon^{-1})

    Local Algorithms for Bounded Degree Sparsifiers in Sparse Graphs

    Get PDF
    In graph sparsification, the goal has almost always been of global nature: compress a graph into a smaller subgraph (sparsifier) that maintains certain features of the original graph. Algorithms can then run on the sparsifier, which in many cases leads to improvements in the overall runtime and memory. This paper studies sparsifiers that have bounded (maximum) degree, and are thus locally sparse, aiming to improve local measures of runtime and memory. To improve those local measures, it is important to be able to compute such sparsifiers locally. We initiate the study of local algorithms for bounded degree sparsifiers in unweighted sparse graphs, focusing on the problems of vertex cover, matching, and independent set. Let eps > 0 be a slack parameter and alpha ge 1 be a density parameter. We devise local algorithms for computing: 1. A (1+eps)-vertex cover sparsifier of degree O(alpha / eps), for any graph of arboricity alpha.footnote{In a graph of arboricity alpha the average degree of any induced subgraph is at most 2alpha.} 2. A (1+eps)-maximum matching sparsifier and also a (1+eps)-maximal matching sparsifier of degree O(alpha / eps, for any graph of arboricity alpha. 3. A (1+eps)-independent set sparsifier of degree O(alpha^2 / eps), for any graph of average degree alpha. Our algorithms require only a single communication round in the standard message passing model of distributed computing, and moreover, they can be simulated locally in a trivial way. As an immediate application we can extend results from distributed computing and local computation algorithms that apply to graphs of degree bounded by d to graphs of arboricity O(d / eps) or average degree O(d^2 / eps), at the expense of increasing the approximation guarantee by a factor of (1+eps). In particular, we can extend the plethora of recent local computation algorithms for approximate maximum and maximal matching from bounded degree graphs to bounded arboricity graphs with a negligible loss in the approximation guarantee. The inherently local behavior of our algorithms can be used to amplify the approximation guarantee of any sparsifier in time roughly linear in its size, which has immediate applications in the area of dynamic graph algorithms. In particular, the state-of-the-art algorithm for maintaining (2-eps)-vertex cover (VC) is at least linear in the graph size, even in dynamic forests. We provide a reduction from the dynamic to the static case, showing that if a t-VC can be computed from scratch in time T(n) in any (sub)family of graphs with arboricity bounded by alpha, for an arbitrary t ge 1, then a (t+eps)-VC can be maintained with update time frac{T(n)}{O((n / alpha) cdot eps^2)}, for any eps > 0. For planar graphs this yields an algorithm for maintaining a (1+eps)-VC with constant update time for any constant eps > 0

    Fully Dynamic Effective Resistances

    Full text link
    In this paper we consider the \emph{fully-dynamic} All-Pairs Effective Resistance problem, where the goal is to maintain effective resistances on a graph GG among any pair of query vertices under an intermixed sequence of edge insertions and deletions in GG. The effective resistance between a pair of vertices is a physics-motivated quantity that encapsulates both the congestion and the dilation of a flow. It is directly related to random walks, and it has been instrumental in the recent works for designing fast algorithms for combinatorial optimization problems, graph sparsification, and network science. We give a data-structure that maintains (1+ϵ)(1+\epsilon)-approximations to all-pair effective resistances of a fully-dynamic unweighted, undirected multi-graph GG with O~(m4/5ϵ4)\tilde{O}(m^{4/5}\epsilon^{-4}) expected amortized update and query time, against an oblivious adversary. Key to our result is the maintenance of a dynamic \emph{Schur complement}~(also known as vertex resistance sparsifier) onto a set of terminal vertices of our choice. This maintenance is obtained (1) by interpreting the Schur complement as a sum of random walks and (2) by randomly picking the vertex subset into which the sparsifier is constructed. We can then show that each update in the graph affects a small number of such walks, which in turn leads to our sub-linear update time. We believe that this local representation of vertex sparsifiers may be of independent interest
    corecore