3,618 research outputs found

    Modal mu-calculi

    Get PDF

    On the Complexity of Existential Positive Queries

    Full text link
    We systematically investigate the complexity of model checking the existential positive fragment of first-order logic. In particular, for a set of existential positive sentences, we consider model checking where the sentence is restricted to fall into the set; a natural question is then to classify which sentence sets are tractable and which are intractable. With respect to fixed-parameter tractability, we give a general theorem that reduces this classification question to the corresponding question for primitive positive logic, for a variety of representations of structures. This general theorem allows us to deduce that an existential positive sentence set having bounded arity is fixed-parameter tractable if and only if each sentence is equivalent to one in bounded-variable logic. We then use the lens of classical complexity to study these fixed-parameter tractable sentence sets. We show that such a set can be NP-complete, and consider the length needed by a translation from sentences in such a set to bounded-variable logic; we prove superpolynomial lower bounds on this length using the theory of compilability, obtaining an interesting type of formula size lower bound. Overall, the tools, concepts, and results of this article set the stage for the future consideration of the complexity of model checking on more expressive logics

    The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

    Get PDF
    We study (collapsible) higher-order pushdown systems --- theoretically robust and well-studied models of higher-order programs --- along with their natural subclass called (collapsible) higher-order basic process algebras. We provide a comprehensive analysis of the model checking complexity of a range of both branching-time and linear-time temporal logics. We obtain tight bounds on data, expression, and combined-complexity for both (collapsible) higher-order pushdown systems and (collapsible) higher-order basic process algebra. At order-kk, results range from polynomial to (k+1)(k+1)-exponential time. Finally, we study (collapsible) higher-order basic process algebras as graph generators and show that they are almost as powerful as (collapsible) higher-order pushdown systems up to MSO interpretations

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure
    corecore