2,044,065 research outputs found

    Mechanism of spontaneous formation of stable magnetic structures on the Sun

    Full text link
    One of the puzzling features of solar magnetism is formation of long-living compact magnetic structures; such as sunspots and pores, in the highly turbulent upper layer of the solar convective zone. We use realistic radiative 3D MHD simulations to investigate the interaction between magnetic field and turbulent convection. In the simulations, a weak vertical uniform magnetic field is imposed in a region of fully developed granular convection; and the total magnetic flux through the top and bottom boundaries is kept constant. The simulation results reveal a process of spontaneous formation of stable magnetic structures, which may be a key to understanding of the magnetic self-organization on the Sun and formation of pores and sunspots. This process consists of two basic steps: 1) formation of small-scale filamentary magnetic structures associated with concentrations of vorticity and whirlpool-type motions, and 2) merging of these structures due to the vortex attraction, caused by converging downdrafts around magnetic concentration below the surface. In the resulting large-scale structure maintained by the converging plasma motions, the magnetic field strength reaches ~1.5 kG at the surface and ~6 kG in the interior; and the surface structure resembles solar pores. The magnetic structure remains stable for the whole simulation run of several hours with no sign of decay.Comment: 13 pages, 4 figures, submitted to the Astrophysical Journa

    Structure formation in electromagnetically driven granular media

    Full text link
    We report structure formation in submonolayers of magnetic microparticles subjected to periodic electrostatic and magnetic excitations. Depending on the excitation parameters, we observe the formation of a rich variety of structures: clusters, rings, chains, and networks. The growth dynamics and shapes of the structures are strongly dependent on the amplitude and frequency of the external magnetic field. We find that for pure ac magnetic driving at low densities of particles, the low-frequency magnetic excitation favors clusters while high frequency excitation favors chains and net-like structures. An abrupt phase transition from chains to a network phase was observed for a high density of particles.Comment: 4 pages, 5 figure

    Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers

    Get PDF
    Structural characteristics in membranes formed by diffusion induced phase separation processes are discussed. Established theories on membrane formation from ternary systems can be extended to describe the effects of high or low molecular weight additives. A mechanism for the formation of nodular structures in the top layer of ultrafiltration membranes is presented. In the last part structures arising from polymer crystallization during immersion precipitation are discussed

    The Effect of Cosmological Background Dynamics on the Spherical Collapse in MOND

    Full text link
    The effect of background dynamics of the universe on formation of large scale structures in the framework of Modified Newtonian Dynamics (MOND) is investigated. A spherical collapse model is used for modeling the formation of the structures. This study is done in two extreme cases: ({\it i}) assuming a universe with a low-density baryonic matter without any cold dark matter and dark energy; ({\it ii}) a dark energy dominated universe with baryonic matter, without cold dark matter. We show that for the case ({\it ii}) the structures virialize at lower redshifts with larger radii compared to the low-density background universe. The dark energy slow downs the collapse of the structures. We show that our results are compatible with recent simulations of the structure formation in MOND.Comment: 16 pages, 4 Figures, accepted by New Astronom

    Triggered Star Formation in the Environment of Young Massive Stars

    Get PDF
    Recent observations with the Spitzer Space Telescope show clear evidence that star formation takes place in the surrounding of young massive O-type stars, which are shaping their environment due to their powerful radiation and stellar winds. In this work we investigate the effect of ionising radiation of massive stars on the ambient interstellar medium (ISM): In particular we want to examine whether the UV-radiation of O-type stars can lead to the observed pillar-like structures and can trigger star formation. We developed a new implementation, based on a parallel Smooth Particle Hydrodynamics code (called IVINE), that allows an efficient treatment of the effect of ionising radiation from massive stars on their turbulent gaseous environment. Here we present first results at very high resolution. We show that ionising radiation can trigger the collapse of an otherwise stable molecular cloud. The arising structures resemble observed structures (e.g. the pillars of creation in the Eagle Nebula (M16) or the Horsehead Nebula B33). Including the effect of gravitation we find small regions that can be identified as formation places of individual stars. We conclude that ionising radiation from massive stars alone can trigger substantial star formation in molecular clouds.Comment: 4 pages, 2 figures. To appear in: "Triggered Star Formation in a Turbulent ISM", IAU Symposium 237, Prague, Czech Republic, August 2006; eds. B.G.Elmegreen & J. Palou
    • …
    corecore