8,395 research outputs found

    A Sum-of-Squares Approach to the Analysis of Zeno Stability in Polynomial Hybrid Systems

    Full text link
    Hybrid dynamical systems can exhibit many unique phenomena, such as Zeno behavior. Zeno behavior is the occurrence of infinite discrete transitions in finite time. Zeno behavior has been likened to a form of finite-time asymptotic stability, and corresponding Lyapunov theorems have been developed. In this paper, we propose a method to construct Lyapunov functions to prove Zeno stability of compact sets in cyclic hybrid systems with parametric uncertainties in the vector fields, domains and guard sets, and reset maps utilizing sum-of-squares programming. This technique can easily be applied to cyclic hybrid systems without parametric uncertainties as well. Examples illustrating the use of the proposed technique are also provided

    Process operating mode monitoring : switching online the right controller

    Get PDF
    This paper presents a structure which deals with process operating mode monitoring and allows the control law reconfiguration by switching online the right controller. After a short review of the advances in switching based control systems during the last decade, we introduce our approach based on the definition of operating modes of a plant. The control reconfiguration strategy is achieved by online selection of an adequate controller, in a case of active accommodation. The main contribution lies in settling up the design steps of the multicontroller structure and its accurate integration in the operating mode detection and accommodation loop. Simulation results show the effectiveness of the operating mode detection and accommodation (OMDA) structure for which the design steps propose a method to study the asymptotic stability, switching performances improvement, and the tuning of the multimodel based detector
    • …
    corecore