2,706 research outputs found

    Approximating the Smallest Spanning Subgraph for 2-Edge-Connectivity in Directed Graphs

    Full text link
    Let GG be a strongly connected directed graph. We consider the following three problems, where we wish to compute the smallest strongly connected spanning subgraph of GG that maintains respectively: the 22-edge-connected blocks of GG (\textsf{2EC-B}); the 22-edge-connected components of GG (\textsf{2EC-C}); both the 22-edge-connected blocks and the 22-edge-connected components of GG (\textsf{2EC-B-C}). All three problems are NP-hard, and thus we are interested in efficient approximation algorithms. For \textsf{2EC-C} we can obtain a 3/23/2-approximation by combining previously known results. For \textsf{2EC-B} and \textsf{2EC-B-C}, we present new 44-approximation algorithms that run in linear time. We also propose various heuristics to improve the size of the computed subgraphs in practice, and conduct a thorough experimental study to assess their merits in practical scenarios

    Henneberg constructions and covers of cone-Laman graphs

    Full text link
    We give Henneberg-type constructions for three families of sparse colored graphs arising in the rigidity theory of periodic and other forced symmetric frameworks. The proof method, which works with Laman-sparse finite covers of colored graphs highlights the connection between these sparse colored families and the well-studied matroidal (k, l)-sparse families.Comment: 14 pages, 2 figure

    Generic rigidity with forced symmetry and sparse colored graphs

    Full text link
    We review some recent results in the generic rigidity theory of planar frameworks with forced symmetry, giving a uniform treatment to the topic. We also give new combinatorial characterizations of minimally rigid periodic frameworks with fixed-area fundamental domain and fixed-angle fundamental domain.Comment: 21 pages, 2 figure

    Planar Induced Subgraphs of Sparse Graphs

    Full text link
    We show that every graph has an induced pseudoforest of at least n−m/4.5n-m/4.5 vertices, an induced partial 2-tree of at least n−m/5n-m/5 vertices, and an induced planar subgraph of at least n−m/5.2174n-m/5.2174 vertices. These results are constructive, implying linear-time algorithms to find the respective induced subgraphs. We also show that the size of the largest KhK_h-minor-free graph in a given graph can sometimes be at most n−m/6+o(m)n-m/6+o(m).Comment: Accepted by Graph Drawing 2014. To appear in Journal of Graph Algorithms and Application
    • …
    corecore