527 research outputs found

    Transduction of Automatic Sequences and Applications

    Full text link
    We consider the implementation of the transduction of automatic sequences, and their generalizations, in the Walnut software for solving decision problems in combinatorics on words. We provide a number of applications, including (a) representations of n! as a sum of three squares (b) overlap-free Dyck words and (c) sums of Fibonacci representations. We also prove results about iterated running sums of the Thue-Morse sequence

    Remarks on the Spectral Properties of Tight Binding and Kronig-Penney Models with Substitution Sequences

    Get PDF
    We comment on some recent investigations on the electronic properties of models associated to the Thue-Morse chain and point out that their conclusions are in contradiction with rigorously proven theorems and indicate some of the sources of these misinterpretations. We briefly review and explain the current status of mathematical results in this field and discuss some conjectures and open problems.Comment: 15,CPT-94/P.3003,tex,

    Surface Magnetization of Aperiodic Ising Quantum Chains

    Full text link
    We study the surface magnetization of aperiodic Ising quantum chains. Using fermion techniques, exact results are obtained in the critical region for quasiperiodic sequences generated through an irrational number as well as for the automatic binary Thue-Morse sequence and its generalizations modulo p. The surface magnetization exponent keeps its Ising value, beta_s=1/2, for all the sequences studied. The critical amplitude of the surface magnetization depends on the strength of the modulation and also on the starting point of the chain along the aperiodic sequence.Comment: 11 pages, 6 eps-figures, Plain TeX, eps

    Canonical Representatives of Morphic Permutations

    Get PDF
    An infinite permutation can be defined as a linear ordering of the set of natural numbers. In particular, an infinite permutation can be constructed with an aperiodic infinite word over {0,,q1}\{0,\ldots,q-1\} as the lexicographic order of the shifts of the word. In this paper, we discuss the question if an infinite permutation defined this way admits a canonical representative, that is, can be defined by a sequence of numbers from [0, 1], such that the frequency of its elements in any interval is equal to the length of that interval. We show that a canonical representative exists if and only if the word is uniquely ergodic, and that is why we use the term ergodic permutations. We also discuss ways to construct the canonical representative of a permutation defined by a morphic word and generalize the construction of Makarov, 2009, for the Thue-Morse permutation to a wider class of infinite words.Comment: Springer. WORDS 2015, Sep 2015, Kiel, Germany. Combinatorics on Words: 10th International Conference. arXiv admin note: text overlap with arXiv:1503.0618

    Spectral Approximation for Quasiperiodic Jacobi Operators

    Full text link
    Quasiperiodic Jacobi operators arise as mathematical models of quasicrystals and in more general studies of structures exhibiting aperiodic order. The spectra of these self-adjoint operators can be quite exotic, such as Cantor sets, and their fine properties yield insight into associated dynamical systems. Quasiperiodic operators can be approximated by periodic ones, the spectra of which can be computed via two finite dimensional eigenvalue problems. Since long periods are necessary to get detailed approximations, both computational efficiency and numerical accuracy become a concern. We describe a simple method for numerically computing the spectrum of a period-KK Jacobi operator in O(K2)O(K^2) operations, and use it to investigate the spectra of Schr\"odinger operators with Fibonacci, period doubling, and Thue-Morse potentials

    Suffix conjugates for a class of morphic subshifts

    Full text link
    Let A be a finite alphabet and f: A^* --> A^* be a morphism with an iterative fixed point f^\omega(\alpha), where \alpha{} is in A. Consider the subshift (X, T), where X is the shift orbit closure of f^\omega(\alpha) and T: X --> X is the shift map. Let S be a finite alphabet that is in bijective correspondence via a mapping c with the set of nonempty suffixes of the images f(a) for a in A. Let calS be a subset S^N be the set of infinite words s = (s_n)_{n\geq 0} such that \pi(s):= c(s_0)f(c(s_1)) f^2(c(s_2))... is in X. We show that if f is primitive and f(A) is a suffix code, then there exists a mapping H: calS --> calS such that (calS, H) is a topological dynamical system and \pi: (calS, H) --> (X, T) is a conjugacy; we call (calS, H) the suffix conjugate of (X, T). In the special case when f is the Fibonacci or the Thue-Morse morphism, we show that the subshift (calS, T) is sofic, that is, the language of calS is regular

    Abelian-Square-Rich Words

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain at most Θ(n2)\Theta(n^2) distinct factors, and there exist words of length nn containing Θ(n2)\Theta(n^2) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length nn grows quadratically with nn. More precisely, we say that an infinite word ww is {\it abelian-square-rich} if, for every nn, every factor of ww of length nn contains, on average, a number of distinct abelian-square factors that is quadratic in nn; and {\it uniformly abelian-square-rich} if every factor of ww contains a number of distinct abelian-square factors that is proportional to the square of its length. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the converse is not true in general. We prove that the Thue-Morse word is uniformly abelian-square-rich and that the function counting the number of distinct abelian-square factors of length 2n2n of the Thue-Morse word is 22-regular. As for Sturmian words, we prove that a Sturmian word sαs_{\alpha} of angle α\alpha is uniformly abelian-square-rich if and only if the irrational α\alpha has bounded partial quotients, that is, if and only if sαs_{\alpha} has bounded exponent.Comment: To appear in Theoretical Computer Science. Corrected a flaw in the proof of Proposition

    Morphisms, Symbolic sequences, and their Standard Forms

    Full text link
    Morphisms are homomorphisms under the concatenation operation of the set of words over a finite set. Changing the elements of the finite set does not essentially change the morphism. We propose a way to select a unique representing member out of all these morphisms. This has applications to the classification of the shift dynamical systems generated by morphisms. In a similar way, we propose the selection of a representing sequence out of the class of symbolic sequences over an alphabet of fixed cardinality. Both methods are useful for the storing of symbolic sequences in databases, like The On-Line Encyclopedia of Integer Sequences. We illustrate our proposals with the kk-symbol Fibonacci sequences

    Quasicrystals, model sets, and automatic sequences

    Get PDF
    We survey mathematical properties of quasicrystals, first from the point of view of harmonic analysis, then from the point of view of morphic and automatic sequences. Nous proposons un tour d'horizon de propri\'et\'es math\'ematiques des quasicristaux, d'abord du point de vue de l'analyse harmonique, ensuite du point de vue des suites morphiques et automatiques
    corecore