1,359 research outputs found

    Order-Based Representation in Random Networks of Cortical Neurons

    Get PDF
    The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen

    The application of auditory signal processing principles to the detection, tracking and association of tonal components in sonar.

    Get PDF
    A steady signal exerts two complementary effects on a noisy acoustic environment: one is to add energy, the other is to create order. The ear has evolved mechanisms to detect both effects and encodes the fine temporal detail of a stimulus in sequences of auditory nerve discharges. Taking inspiration from these ideas, this thesis investigates the use of regular timing for sonar signal detection. Algorithms that operate on the temporal structure of a received signal are developed for the detection of merchant vessels. These ideas are explored by reappraising three areas traditionally associated with power-based detection. First of all, a time-frequency display based on timing instead of power is developed. Rather than inquiring of the display, "How much energy has been measured at this frequency? ", one would ask, "How structured is the signal at this frequency? Is this consistent with a target? " The auditory-motivated zero crossings with peak amplitudes (ZCPA) algorithm forms the starting-point for this study. Next, matters related to quantitative system performance analysis are addressed, such as how often a system will fail to detect a signal in particular conditions, or how much energy is required to guarantee a certain probability of detection. A suite of optimal temporal receivers is designed and is subsequently evaluated using the same kinds of synthetic signal used to assess power-based systems: Gaussian processes and sinusoids. The final area of work considers how discrete components on a sonar signal display, such as tonals and transients, can be identified and organised according to auditory scene analysis principles. Two algorithms are presented and evaluated using synthetic signals: one is designed to track a tonal through transient events, and the other attempts to identify groups of comodulated tonals against a noise background. A demonstration of each algorithm is provided for recorded sonar signals

    Industrial noise control manual

    Get PDF
    "Basic information on understanding, measuring, and controlling industrial noise is presented, along with descriptions of 61 industrial noise control projects. Noise problem analysis, basic methods of noise control, acoustical materials, and the choice of a consultant are discussed. A partially annotated bibliography of books and articles on relevant topics is provided."- NIOSHTIC-2Contract no. 210-76-0149Cover title.Also available via the World Wide Web

    MSFC Skylab instrumentation and communication system mission evaluation

    Get PDF
    An evaluation of the in-orbit performance of the instrumentation and communications systems installed on Skylab is presented. Performance is compared with functional requirements and the fidelity of communications. In-orbit performance includes processing engineering, scientific, experiment, and biomedical data, implementing ground-generated commands, audio and video communication, generating rendezvous ranging information, and radio frequency transmission and reception. A history of the system evolution based on the functional requirements and a physical description of the launch configuration is included. The report affirms that the instrumentation and communication system satisfied all imposed requirements

    Conference on Medical Results of the First U.S. Manned Suborbital Space Flight

    Get PDF
    This document is a compilation of papers presented at a Conference on the Medical Results of the First U.S. Manned Suborbital Space Flight. This conference was held by the NASA, in cooperation with the National Institutes of Health and the National Academy of Sciences, at the U.S. Department of State Auditorium on June 6, 1961. The papers were prepared by representatives of the NASA Space Task Group in collaboration with personnel from various Department of Defense medical installations, the University of Pennsylvania, and McDonnell Aircraft Corporation

    Predicting room acoustical behavior with the ODEON computer model

    Get PDF
    • …
    corecore