14 research outputs found

    Application of Fault Analysis to Some Cryptographic Standards

    Get PDF
    Cryptanalysis methods can be classified as pure mathematical attacks, such as linear and differential cryptanalysis, and implementation dependent attacks such as power analysis and fault analysis. Pure mathematical attacks exploit the mathematical structure of the cipher to reveal the secret key inside the cipher. On the other hand, implementation dependent attacks assume that the attacker has access to the cryptographic device to launch the attack. Fault analysis is an example of a side channel attack in which the attacker is assumed to be able to induce faults in the cryptographic device and observe the faulty output. Then, the attacker tries to recover the secret key by combining the information obtained from the faulty and the correct outputs. Even though fault analysis attacks may require access to some specialized equipment to be able to insert faults at specific locations or at specific times during the computation, the resulting attacks usually have time and memory complexities which are far more practical as compared to pure mathematical attacks. Recently, several AES-based primitives were approved as new cryptographic standards throughout the world. For example, Kuznyechik was approved as the standard block cipher in Russian Federation, and Kalyna and Kupyna were approved as the standard block cipher and the hash function, respectively, in Ukraine. Given the importance of these three new primitives, in this thesis, we analyze their resistance against fault analysis attacks. Firstly, we modified a differential fault analysis (DFA) attack that was applied on AES and applied it on Kuzneychik. Application of DFA on Kuznyechik was not a trivial task because of the linear transformation layer used in the last round of Kuznyechik. In order to bypass the effect of this linear transformation operation, we had to use an equivalent representation of the last round which allowed us to recover the last two round keys using a total of four faults and break the cipher. Secondly, we modified the attack we applied on Kuzneychik and applied it on Kalyna. Kalyna has a complicated key scheduling and it uses modulo 264 addition operation for applying the first and last round keys. This makes Kalyna more resistant to DFA as com- pared to AES and Kuznyechik but it is still practically breakable because the number of key candidates that can be recovered by DFA can be brute-forced in a reasonable time. We also considered the case where the SBox entries of Kalyna are not known and showed how to recover a set of candidates for the SBox entries. Lastly, we applied two fault analysis attacks on Kupyna hash function. In the first case, we assumed that the SBoxes and all the other function parameters are known, and in the second case we assumed that the SBoxes were kept secret and attacked the hash function accordingly. Kupyna can be used as the underlying hash function for the construction of MAC schemes such as secret IV, secret prefix, HMAC or NMAC. In our analysis, we showed that secret inputs of Kupyna can be recovered using fault analysis. To conclude, we analyzed two newly accepted standard ciphers (Kuznyechik, Kalyna) and one newly approved standard hash function (Kupyna) for their resistance against fault attacks. We also analyzed Kalyna and Kupyna with the assumption that these ciphers can be deployed with secret user defined SBoxes in order to increase their security

    Soft Error Resistant Design of the AES Cipher Using SRAM-based FPGA

    Get PDF
    This thesis presents a new architecture for the reliable implementation of the symmetric-key algorithm Advanced Encryption Standard (AES) in Field Programmable Gate Arrays (FPGAs). Since FPGAs are prone to soft errors caused by radiation, and AES is highly sensitive to errors, reliable architectures are of significant concern. Energetic particles hitting a device can flip bits in FPGA SRAM cells controlling all aspects of the implementation. Unlike previous research, heterogeneous error detection techniques based on properties of the circuit and functionality are used to provide adequate reliability at the lowest possible cost. The use of dual ported block memory for SubBytes, duplication for the control circuitry, and a new enhanced parity technique for MixColumns is proposed. Previous parity techniques cover single errors in datapath registers, however, soft errors can occur in the control circuitry as well as in SRAM cells forming the combinational logic and routing. In this research, propagation of single errors is investigated in the routed netlist. Weaknesses of the previous parity techniques are identified. Architectural redesign at the register-transfer level is introduced to resolve undetected single errors in both the routing and the combinational logic. Reliability of the AES implementation is not only a critical issue in large scale FPGA-based systems but also at both higher altitudes and in space applications where there are a larger number of energetic particles. Thus, this research is important for providing efficient soft error resistant design in many current and future secure applications

    Natural Water Treatment Systems for Safe and Sustainable Water Supply in the Indian Context

    Get PDF
    "Natural Water Treatment Systems for Safe and Sustainable Water Supply in the Indian Context is based on the work from the Saph Pani project (Hindi word meaning potable water). The book aims to study and improve natural water treatment systems, such as River Bank Filtration (RBF), Managed Aquifer Recharge (MAR), and wetlands in India, building local and European expertise in this field. The project aims to enhance water resources and water supply, particularly in water stressed urban and peri urban areas in different parts of the Indian sub-continent. This project is co-funded by the European Union under the Seventh Framework (FP7) scheme of small or medium scale focused research projects for specific cooperation actions (SICA) dedicated to international cooperation partner countries. Natural Water Treatment Systems for Safe and Sustainable Water Supply in the Indian Context provides: an introduction to the concepts of natural water treatment systems (MAR, RBF, wetlands) at national and international level knowledge of the basics of MAR, RBF and wetlands, methods and hydrogeological characterisation an insight into case studies in India and abroad. This book is a useful resource for teaching at Post Graduate level, for research and professional reference.
    corecore