1,662 research outputs found

    Fast-decodable MIDO codes from non-associative algebras

    Get PDF
    By defining a multiplication on a direct sum of n copies of a given cyclic division algebra, we obtain new unital non-associative algebras. We employ their left multiplication to construct rate-n and rate-2 fully diverse fast ML-decodable space-time block codes for a Multiple-Input-Double-Output (MIDO) system. We give examples of fully diverse rate-2 4Γ—2, 6Γ—2, 8Γ—2 and 12Γ—2 space-time block codes and of a rate-3 6Γ—2 code. All are fast ML-decodable. Our approach generalises the iterated codes in Markin and Oggier

    The nonassociative algebras used to build fast-decodable space-time block codes

    Get PDF
    Let K/F and K/L be two cyclic Galois field extensions and D a cyclic algebra. Given an invertible element d in D, we present three families of unital nonassociative algebras defined on the direct sum of n copies of D. Two of these families appear either explicitly or implicitly in the designs of fast-decodable space-time block codes in papers by Srinath, Rajan, Markin, Oggier, and the authors. We present conditions for the algebras to be division and propose a construction for fully diverse fast decodable space-time block codes of rate-m for nm transmit and m receive antennas. We present a DMT-optimalrate-3 code for 6 transmit and 3 receive antennas which is fast-decodable, with ML-decoding complexity at most O(M^15)

    Optimization of Fast-Decodable Full-Rate STBC with Non-Vanishing Determinants

    Full text link
    Full-rate STBC (space-time block codes) with non-vanishing determinants achieve the optimal diversity-multiplexing tradeoff but incur high decoding complexity. To permit fast decoding, Sezginer, Sari and Biglieri proposed an STBC structure with special QR decomposition characteristics. In this paper, we adopt a simplified form of this fast-decodable code structure and present a new way to optimize the code analytically. We show that the signal constellation topology (such as QAM, APSK, or PSK) has a critical impact on the existence of non-vanishing determinants of the full-rate STBC. In particular, we show for the first time that, in order for APSK-STBC to achieve non-vanishing determinant, an APSK constellation topology with constellation points lying on square grid and ring radius \sqrt{m^2+n^2} (m,n\emph{\emph{integers}}) needs to be used. For signal constellations with vanishing determinants, we present a methodology to analytically optimize the full-rate STBC at specific constellation dimension.Comment: Accepted by IEEE Transactions on Communication

    Asymptotically-Optimal, Fast-Decodable, Full-Diversity STBCs

    Full text link
    For a family/sequence of STBCs C1,C2,…\mathcal{C}_1,\mathcal{C}_2,\dots, with increasing number of transmit antennas NiN_i, with rates RiR_i complex symbols per channel use (cspcu), the asymptotic normalized rate is defined as lim⁑iβ†’βˆžRiNi\lim_{i \to \infty}{\frac{R_i}{N_i}}. A family of STBCs is said to be asymptotically-good if the asymptotic normalized rate is non-zero, i.e., when the rate scales as a non-zero fraction of the number of transmit antennas, and the family of STBCs is said to be asymptotically-optimal if the asymptotic normalized rate is 1, which is the maximum possible value. In this paper, we construct a new class of full-diversity STBCs that have the least ML decoding complexity among all known codes for any number of transmit antennas N>1N>1 and rates R>1R>1 cspcu. For a large set of (R,N)\left(R,N\right) pairs, the new codes have lower ML decoding complexity than the codes already available in the literature. Among the new codes, the class of full-rate codes (R=NR=N) are asymptotically-optimal and fast-decodable, and for N>5N>5 have lower ML decoding complexity than all other families of asymptotically-optimal, fast-decodable, full-diversity STBCs available in the literature. The construction of the new STBCs is facilitated by the following further contributions of this paper:(i) For g>1g > 1, we construct gg-group ML-decodable codes with rates greater than one cspcu. These codes are asymptotically-good too. For g>2g>2, these are the first instances of gg-group ML-decodable codes with rates greater than 11 cspcu presented in the literature. (ii) We construct a new class of fast-group-decodable codes for all even number of transmit antennas and rates 1<R≀5/41 < R \leq 5/4.(iii) Given a design with full-rank linear dispersion matrices, we show that a full-diversity STBC can be constructed from this design by encoding the real symbols independently using only regular PAM constellations.Comment: 16 pages, 3 tables. The title has been changed.The class of asymptotically-good multigroup ML decodable codes has been extended to a broader class of number of antennas. New fast-group-decodable codes and asymptotically-optimal, fast-decodable codes have been include

    Construction of Block Orthogonal STBCs and Reducing Their Sphere Decoding Complexity

    Full text link
    Construction of high rate Space Time Block Codes (STBCs) with low decoding complexity has been studied widely using techniques such as sphere decoding and non Maximum-Likelihood (ML) decoders such as the QR decomposition decoder with M paths (QRDM decoder). Recently Ren et al., presented a new class of STBCs known as the block orthogonal STBCs (BOSTBCs), which could be exploited by the QRDM decoders to achieve significant decoding complexity reduction without performance loss. The block orthogonal property of the codes constructed was however only shown via simulations. In this paper, we give analytical proofs for the block orthogonal structure of various existing codes in literature including the codes constructed in the paper by Ren et al. We show that codes formed as the sum of Clifford Unitary Weight Designs (CUWDs) or Coordinate Interleaved Orthogonal Designs (CIODs) exhibit block orthogonal structure. We also provide new construction of block orthogonal codes from Cyclic Division Algebras (CDAs) and Crossed-Product Algebras (CPAs). In addition, we show how the block orthogonal property of the STBCs can be exploited to reduce the decoding complexity of a sphere decoder using a depth first search approach. Simulation results of the decoding complexity show a 30% reduction in the number of floating point operations (FLOPS) of BOSTBCs as compared to STBCs without the block orthogonal structure.Comment: 16 pages, 7 figures; Minor changes in lemmas and construction

    Fast-Decodable Asymmetric Space-Time Codes from Division Algebras

    Full text link
    Multiple-input double-output (MIDO) codes are important in the near-future wireless communications, where the portable end-user device is physically small and will typically contain at most two receive antennas. Especially tempting is the 4 x 2 channel due to its immediate applicability in the digital video broadcasting (DVB). Such channels optimally employ rate-two space-time (ST) codes consisting of (4 x 4) matrices. Unfortunately, such codes are in general very complex to decode, hence setting forth a call for constructions with reduced complexity. Recently, some reduced complexity constructions have been proposed, but they have mainly been based on different ad hoc methods and have resulted in isolated examples rather than in a more general class of codes. In this paper, it will be shown that a family of division algebra based MIDO codes will always result in at least 37.5% worst-case complexity reduction, while maintaining full diversity and, for the first time, the non-vanishing determinant (NVD) property. The reduction follows from the fact that, similarly to the Alamouti code, the codes will be subsets of matrix rings of the Hamiltonian quaternions, hence allowing simplified decoding. At the moment, such reductions are among the best known for rate-two MIDO codes. Several explicit constructions are presented and shown to have excellent performance through computer simulations.Comment: 26 pages, 1 figure, submitted to IEEE Trans. Inf. Theory, October 201

    Generalized Silver Codes

    Full text link
    For an ntn_t transmit, nrn_r receive antenna system (ntΓ—nrn_t \times n_r system), a {\it{full-rate}} space time block code (STBC) transmits nmin=min(nt,nr)n_{min} = min(n_t,n_r) complex symbols per channel use. The well known Golden code is an example of a full-rate, full-diversity STBC for 2 transmit antennas. Its ML-decoding complexity is of the order of M2.5M^{2.5} for square MM-QAM. The Silver code for 2 transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M2M^2. Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for nrβ‰₯ntn_r \geq n_t) but have a high ML-decoding complexity of the order of MntnminM^{n_tn_{min}} (for nr<ntn_r < n_t, the punctured Perfect codes are considered). In this paper, a scheme to obtain full-rate STBCs for 2a2^a transmit antennas and any nrn_r with reduced ML-decoding complexity of the order of Mnt(nminβˆ’(3/4))βˆ’0.5M^{n_t(n_{min}-(3/4))-0.5}, is presented. The codes constructed are also information lossless for nrβ‰₯ntn_r \geq n_t, like the Perfect codes and allow higher mutual information than the comparable punctured Perfect codes for nr<ntn_r < n_t. These codes are referred to as the {\it generalized Silver codes}, since they enjoy the same desirable properties as the comparable Perfect codes (except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver-Golden codes for 2 transmit antennas. Simulation results of the symbol error rates for 4 and 8 transmit antennas show that the generalized Silver codes match the punctured Perfect codes in error performance while offering lower ML-decoding complexity.Comment: Accepted for publication in the IEEE Transactions on Information Theory. This revised version has 30 pages, 7 figures and Section III has been completely revise
    • …
    corecore