44,501 research outputs found

    Robust estimation of risks from small samples

    Get PDF
    Data-driven risk analysis involves the inference of probability distributions from measured or simulated data. In the case of a highly reliable system, such as the electricity grid, the amount of relevant data is often exceedingly limited, but the impact of estimation errors may be very large. This paper presents a robust nonparametric Bayesian method to infer possible underlying distributions. The method obtains rigorous error bounds even for small samples taken from ill-behaved distributions. The approach taken has a natural interpretation in terms of the intervals between ordered observations, where allocation of probability mass across intervals is well-specified, but the location of that mass within each interval is unconstrained. This formulation gives rise to a straightforward computational resampling method: Bayesian Interval Sampling. In a comparison with common alternative approaches, it is shown to satisfy strict error bounds even for ill-behaved distributions.Comment: 13 pages, 3 figures; supplementary information provided. A revised version of this manuscript has been accepted for publication in Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science

    Comparing stochastic design decision belief models : pointwise versus interval probabilities.

    Get PDF
    Decision support systems can either directly support a product designer or support an agent operating within a multi-agent system (MAS). Stochastic based decision support systems require an underlying belief model that encodes domain knowledge. The underlying supporting belief model has traditionally been a probability distribution function (PDF) which uses pointwise probabilities for all possible outcomes. This can present a challenge during the knowledge elicitation process. To overcome this, it is proposed to test the performance of a credal set belief model. Credal sets (sometimes also referred to as p-boxes) use interval probabilities rather than pointwise probabilities and therefore are more easier to elicit from domain experts. The PDF and credal set belief models are compared using a design domain MAS which is able to learn, and thereby refine, the belief model based on its experience. The outcome of the experiment illustrates that there is no significant difference between the PDF based and credal set based belief models in the performance of the MAS

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Scattering statistics of rock outcrops: Model-data comparisons and Bayesian inference using mixture distributions

    Get PDF
    The probability density function of the acoustic field amplitude scattered by the seafloor was measured in a rocky environment off the coast of Norway using a synthetic aperture sonar system, and is reported here in terms of the probability of false alarm. Interpretation of the measurements focused on finding appropriate class of statistical models (single versus two-component mixture models), and on appropriate models within these two classes. It was found that two-component mixture models performed better than single models. The two mixture models that performed the best (and had a basis in the physics of scattering) were a mixture between two K distributions, and a mixture between a Rayleigh and generalized Pareto distribution. Bayes' theorem was used to estimate the probability density function of the mixture model parameters. It was found that the K-K mixture exhibits significant correlation between its parameters. The mixture between the Rayleigh and generalized Pareto distributions also had significant parameter correlation, but also contained multiple modes. We conclude that the mixture between two K distributions is the most applicable to this dataset.Comment: 15 pages, 7 figures, Accepted to the Journal of the Acoustical Society of Americ

    What we talk about when we talk about numbers

    Get PDF
    In this paper, I describe and motivate a new species of mathematical structuralism, which I call Instrumental Nominalism about Set-Theoretic Structuralism. As the name suggests, this approach takes standard Set-Theoretic Structuralism of the sort championed by Bourbaki and removes its ontological commitments by taking an instrumental nominalist approach to that ontology of the sort described by Joseph Melia and Gideon Rosen. I argue that this avoids all of the problems that plague other versions of structuralism
    • …
    corecore