1,932 research outputs found

    Optimal control of elliptic equations with positive measures

    Get PDF
    Optimal control problems without control costs in general do not possess solutions due to the lack of coercivity. However, unilateral constraints together with the assumption of existence of strictly positive solutions of a pre-adjoint state equation, are sufficient to obtain existence of optimal solutions in the space of Radon measures. Optimality conditions for these generalized minimizers can be obtained using Fenchel duality, which requires a non-standard perturbation approach if the control-to-observation mapping is not continuous (e.g., for Neumann boundary control in three dimensions). Combining a conforming discretization of the measure space with a semismooth Newton method allows the numerical solution of the optimal control problem

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Solutions of max-plus linear equations and large deviations

    Full text link
    We generalise the Gartner-Ellis theorem of large deviations theory. Our results allow us to derive large deviation type results in stochastic optimal control from the convergence of generalised logarithmic moment generating functions. They rely on the characterisation of the uniqueness of the solutions of max-plus linear equations. We give an illustration for a simple investment model, in which logarithmic moment generating functions represent risk-sensitive values.Comment: 6 page

    Projections in minimax algebra

    Get PDF
    An axiomatic theory of linear operators can be constructed for abstract spaces defined over (R, ⊕, ⊗), that is over the (extended) real numbersR with the binary operationsx ⊕ y = max (x,y) andx ⊗ y = x + y. Many of the features of conventional linear operator theory can be reproduced in this theory, although the proof techniques are quite different. Specialisation of the theory to spaces ofn-tuples provides techniques for analysing a number of well-known operational research problems, whilst specialisation to function spaces provides a natural formal framework for certain familiar problems of approximation, optimisation and duality
    corecore