15,657 research outputs found

    Extensions to the Estimation Calculus

    Get PDF
    Walther’s estimation calculus was designed to prove the termination of functional programs, and can also be used to solve the similar problem of proving the well-foundedness of induction rules. However, there are certain features of the goal formulae which are more common to the problem of induction rule well-foundedness than the problem of termination, and which the calculus cannot handle. We present a sound extension of the calculus that is capable of dealing with these features. The extension develops Walther’s concept of an argument bounded function in two ways: firstly, so that the function may be bounded below by its argument, and secondly, so that a bound may exist between two arguments of a predicate. Our calculus enables automatic proofs of the well-foundedness of a large class of induction rules not captured by the original calculus

    Extending Nunchaku to Dependent Type Theory

    Get PDF
    Nunchaku is a new higher-order counterexample generator based on a sequence of transformations from polymorphic higher-order logic to first-order logic. Unlike its predecessor Nitpick for Isabelle, it is designed as a stand-alone tool, with frontends for various proof assistants. In this short paper, we present some ideas to extend Nunchaku with partial support for dependent types and type classes, to make frontends for Coq and other systems based on dependent type theory more useful.Comment: In Proceedings HaTT 2016, arXiv:1606.0542

    On the Implementation of the Probabilistic Logic Programming Language ProbLog

    Get PDF
    The past few years have seen a surge of interest in the field of probabilistic logic learning and statistical relational learning. In this endeavor, many probabilistic logics have been developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining of large biological networks. In ProbLog, facts can be labeled with probabilities. These facts are treated as mutually independent random variables that indicate whether these facts belong to a randomly sampled program. Different kinds of queries can be posed to ProbLog programs. We introduce algorithms that allow the efficient execution of these queries, discuss their implementation on top of the YAP-Prolog system, and evaluate their performance in the context of large networks of biological entities.Comment: 28 pages; To appear in Theory and Practice of Logic Programming (TPLP

    On Tarski's fixed point theorem

    Full text link
    A concept of abstract inductive definition on a complete lattice is formulated and studied. As an application, a constructive and predicative version of Tarski's fixed point theorem is obtained.Comment: Proc. Amer. Math. Soc., to appea

    Some observations on the logical foundations of inductive theorem proving

    Full text link
    In this paper we study the logical foundations of automated inductive theorem proving. To that aim we first develop a theoretical model that is centered around the difficulty of finding induction axioms which are sufficient for proving a goal. Based on this model, we then analyze the following aspects: the choice of a proof shape, the choice of an induction rule and the language of the induction formula. In particular, using model-theoretic techniques, we clarify the relationship between notions of inductiveness that have been considered in the literature on automated inductive theorem proving. This is a corrected version of the paper arXiv:1704.01930v5 published originally on Nov.~16, 2017

    Combining k-Induction with Continuously-Refined Invariants

    Full text link
    Bounded model checking (BMC) is a well-known and successful technique for finding bugs in software. k-induction is an approach to extend BMC-based approaches from falsification to verification. Automatically generated auxiliary invariants can be used to strengthen the induction hypothesis. We improve this approach and further increase effectiveness and efficiency in the following way: we start with light-weight invariants and refine these invariants continuously during the analysis. We present and evaluate an implementation of our approach in the open-source verification-framework CPAchecker. Our experiments show that combining k-induction with continuously-refined invariants significantly increases effectiveness and efficiency, and outperforms all existing implementations of k-induction-based software verification in terms of successful verification results.Comment: 12 pages, 5 figures, 2 tables, 2 algorithm

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs
    • 

    corecore