104,164 research outputs found

    On Error Estimation for Reduced-order Modeling of Linear Non-parametric and Parametric Systems

    Get PDF
    Motivated by a recently proposed error estimator for the transfer function of the reduced-order model of a given linear dynamical system, we further develop more theoretical results in this work. Furthermore, we propose several variants of the error estimator, and compare those variants with the existing ones both theoretically and numerically. It has been shown that some of the proposed error estimators perform better than or equally well as the existing ones. All the error estimators considered can be easily extended to estimate output error of reduced-order modeling for steady linear parametric systems.Comment: 34 pages, 12 figure

    Finding Structural Information of RF Power Amplifiers using an Orthogonal Non-Parametric Kernel Smoothing Estimator

    Full text link
    A non-parametric technique for modeling the behavior of power amplifiers is presented. The proposed technique relies on the principles of density estimation using the kernel method and is suited for use in power amplifier modeling. The proposed methodology transforms the input domain into an orthogonal memory domain. In this domain, non-parametric static functions are discovered using the kernel estimator. These orthogonal, non-parametric functions can be fitted with any desired mathematical structure, thus facilitating its implementation. Furthermore, due to the orthogonality, the non-parametric functions can be analyzed and discarded individually, which simplifies pruning basis functions and provides a tradeoff between complexity and performance. The results show that the methodology can be employed to model power amplifiers, therein yielding error performance similar to state-of-the-art parametric models. Furthermore, a parameter-efficient model structure with 6 coefficients was derived for a Doherty power amplifier, therein significantly reducing the deployment's computational complexity. Finally, the methodology can also be well exploited in digital linearization techniques.Comment: Matlab sample code (15 MB): https://dl.dropboxusercontent.com/u/106958743/SampleMatlabKernel.zi

    Guaranteed passive parameterized model order reduction of the partial element equivalent circuit (PEEC) method

    Get PDF
    The decrease of IC feature size and the increase of operating frequencies require 3-D electromagnetic methods, such as the partial element equivalent circuit (PEEC) method, for the analysis and design of high-speed circuits. Very large systems of equations are often produced by 3-D electromagnetic methods. During the circuit synthesis of large-scale digital or analog applications, it is important to predict the response of the system under study as a function of design parameters, such as geometrical and substrate features, in addition to frequency (or time). Parameterized model order reduction (PMOR) methods become necessary to reduce large systems of equations with respect to frequency and other design parameters. We propose an innovative PMOR technique applicable to PEEC analysis, which combines traditional passivity-preserving model order reduction methods and positive interpolation schemes. It is able to provide parametric reduced-order models, stable, and passive by construction over a user-defined range of design parameter values. Numerical examples validate the proposed approach

    Matrix-interpolation-based parametric model order reduction for multiconductor transmission lines with delays

    Get PDF
    A novel parametric model order reduction technique based on matrix interpolation for multiconductor transmission lines (MTLs) with delays having design parameter variations is proposed in this brief. Matrix interpolation overcomes the oversize problem caused by input-output system-level interpolation-based parametric macromodels. The reduced state-space matrices are obtained using a higher-order Krylov subspace-based model order reduction technique, which is more efficient in comparison to the Gramian-based parametric modeling in which the projection matrix is computed using a Cholesky factorization. The design space is divided into cells, and then the Krylov subspaces computed for each cell are merged and then truncated using an adaptive truncation algorithm with respect to their singular values to obtain a compact common projection matrix. The resulting reduced-order state-space matrices and the delays are interpolated using positive interpolation schemes, making it computationally cheap and accurate for repeated system evaluations under different design parameter settings. The proposed technique is successfully applied to RLC (R-resistor, L-inductor, C-capacitance) and MTL circuits with delays

    Parametric t-Distributed Stochastic Exemplar-centered Embedding

    Full text link
    Parametric embedding methods such as parametric t-SNE (pt-SNE) have been widely adopted for data visualization and out-of-sample data embedding without further computationally expensive optimization or approximation. However, the performance of pt-SNE is highly sensitive to the hyper-parameter batch size due to conflicting optimization goals, and often produces dramatically different embeddings with different choices of user-defined perplexities. To effectively solve these issues, we present parametric t-distributed stochastic exemplar-centered embedding methods. Our strategy learns embedding parameters by comparing given data only with precomputed exemplars, resulting in a cost function with linear computational and memory complexity, which is further reduced by noise contrastive samples. Moreover, we propose a shallow embedding network with high-order feature interactions for data visualization, which is much easier to tune but produces comparable performance in contrast to a deep neural network employed by pt-SNE. We empirically demonstrate, using several benchmark datasets, that our proposed methods significantly outperform pt-SNE in terms of robustness, visual effects, and quantitative evaluations.Comment: fixed typo
    • …
    corecore