223 research outputs found

    Impact of Spatial Filtering on Distortion from Low-Noise Amplifiers in Massive MIMO Base Stations

    Full text link
    In massive MIMO base stations, power consumption and cost of the low-noise amplifiers (LNAs) can be substantial because of the many antennas. We investigate the feasibility of inexpensive, power efficient LNAs, which inherently are less linear. A polynomial model is used to characterize the nonlinear LNAs and to derive the second-order statistics and spatial correlation of the distortion. We show that, with spatial matched filtering (maximum-ratio combining) at the receiver, some distortion terms combine coherently, and that the SINR of the symbol estimates therefore is limited by the linearity of the LNAs. Furthermore, it is studied how the power from a blocker in the adjacent frequency band leaks into the main band and creates distortion. The distortion term that scales cubically with the power received from the blocker has a spatial correlation that can be filtered out by spatial processing and only the coherent term that scales quadratically with the power remains. When the blocker is in free-space line-of-sight and the LNAs are identical, this quadratic term has the same spatial direction as the desired signal, and hence cannot be removed by linear receiver processing

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain

    Optimal low-power design of a multicell multiuser massive MIMO system at 3.7 GHz for 5G wireless networks

    Get PDF
    Massive MIMO techniques are expected to deliver significant performance gains for the future wireless communication networks by improving the spectral and the energy efficiencies. In this paper, we propose a method to optimize the positions, the coverage, and the energy consumption of the massive MIMO base stations within a suburban area in Ghent, Belgium, while meeting the low power requirements. The results reveal that massive MIMO provides better performances for the crowded scenario where users' mobility is limited. With 256 antennas, a massive MIMO base station can simultaneously multiplex 18 users at the same time-frequency resource while consuming 8 times less power and providing 200 times more capacity than a 4G reference network for the same coverage. Moreover, a pilot reuse pattern of 3 is recommended in a multiuser multicell environment to obtain a good tradeoff between the high spectral efficiency and the low power requirement

    Spectral-energy efficiency trade-off for next-generation wireless communication systems

    Get PDF
    The data traffic in cellular networks has had and will experience a rapid exponential rise. Therefore, it is essential to innovate a new cellular architecture with advanced wireless technologies that can offer more capacity and enhanced spectral efficiency to manage the exponential data traffic growth. Managing such mass data traffic, however, brings up another challenge of increasing energy consumption. This is because it contributes into a growing fraction of the carbon dioxide (CO2) emission which is a global concern today due to its negative impact on the environment. This has resulted in creating a new paradigm shift towards both spectral and energy efficient orientated design for the next-generation wireless access networks. Acquiring both improved energy efficiency and spectral efficiency has, nonetheless, shown to be a difficult goal to achieve as it seems improving one is at the detriment to the other. Therefore, the trade-off between the spectral and energy efficiency is of paramount importance to assess the energy consumption in a wireless communication system required to attain a specific spectral efficiency. This thesis looks into this problem. It studies the spectral-energy efficiency tradeoff for some of the emerging wireless communication technologies which are seen as potential candidates for the fifth generation (5G) mobile cellular system. The focus is on the orthogonal frequency division multiple access (OFDMA), mobile femtocell (MFemtocell), cognitive radio (CR), and the spatial modulation (SM). Firstly, the energy-efficient resource allocation scheme for multi-user OFDMA (MU-OFDMA) system is studied. The spectral-energy efficiency trade-off is analysed under the constraint of maintaining the fairness among users. The energy-efficient optimisation problem has been formulated as integer fractional programming. We then apply an iterative method to simplify the problem to an integer linear programming (ILP) problem. Secondly, the spectral and energy efficiency for a cellular system with MFemtocell deployment is investigated using different resource partitioning schemes. Femtocells are low range, low power base stations (BSs) that improve the coverage inside a home or office building. MFemtocell adopts the femtocell solution to be deployed in public transport and emergency vehicles. Closed-form expressions for the relationships between the spectral and energy efficiency are derived for a single-user (SU) MFemtocell network. We also study the spectral efficiency for MU-MFemtocells with two opportunistic scheduling schemes. Thirdly, the spectral-energy efficiency trade-off for CR networks is analysed at both SU and MU CR systems against varying signal-to-noise ratio (SNR) values. CR is an innovative radio device that aims to utilise the spectrum more efficiently by opportunistically exploiting underutilised licensed spectrum. For the SU system, we study the required energy to achieve a specific spectral efficiency for a CR channel under two different types of power constraints in different fading environments. In this scenario, interference constraint at the primary receiver (PR) is also considered to protect the PR from harmful interference. At the system level, we study the spectral and energy efficiency for a CR network that shares the spectrum with an indoor network. Adopting the extreme-value theory, we are able to derive the average spectral efficiency of the CR network. Finally, we propose two innovative schemes to enhance the capability of (SM). SM is a recently developed technique that is employed for a low complexity multipleinput multiple-output (MIMO) transmission. The first scheme can be applied for SU MIMO (SU-MIMO) to offer more degrees of freedom than SM. Whereas the second scheme introduces a transmission structure by which the SM is adopted into a downlink MU-MIMO system. Unlike SM, both proposed schemes do not involve any restriction into the number of transmit antennas when transmitting signals. The spectral-energy efficiency trade-off for the MU-SM in the massive MIMO system is studied. In this context, we develop an iterative energy-efficient water-filling algorithm to optimises the transmit power and achieve the maximum energy efficiency for a given spectral efficiency. In summary, the research presented in this thesis reveals mathematical tools to analysis the spectral and energy efficiency for wireless communications technologies. It also offers insight to solve optimisation problems that belong to a class of problems with objectives of enhancing the energy efficiency

    Research Issues, Challenges, and Opportunities of Wireless Power Transfer-Aided Full-Duplex Relay Systems

    Get PDF
    We present a comprehensive review for wireless power transfer (WPT)-aided full-duplex (FD) relay systems. Two critical challenges in implementing WPT-aided FD relay systems are presented, that is, pseudo FD realization and high power consumption. Existing time-splitting or power-splitting structure based-WPT-aided FD relay systems can only realize FD operation in one of the time slots or only forward part of the received signal to the destination, belonging to pseudo FD realization. Besides, self-interference is treated as noise and self-interference cancellation (SIC) operation incurs high power consumption at the FD relay node. To this end, a promising solution is outlined to address the two challenges, which realizes consecutive FD realization at all times and forwards all the desired signal to the destination for decoding. Also, active SIC, that is, analog/digital cancellation, is not required by the proposed solution, which effectively reduces the circuit complexity and releases high power consumption at the FD relay node. Specific classifications and performance metrics of WPT-aided FD relay systems are summarized. Some future research is also envisaged for WPT-aided FD systems
    corecore