2,115 research outputs found

    Modeling and Optimizing Energy Supply and Demand in Home Area Power Network (HAPN)

    Get PDF
    Internet of energy based smart power grids demonstrate high in-feed from renewable energy resources (RESs) and lofty out-feed to energy consumers. Uncertainties evolved by incorporating RESs and time-varying energy consumption present immense challenges to the optimal control of smart power networks. To deal with these challenges, it is important to make the system deterministic by making time-ahead prediction and scheduling of power supply and demand. The present work confers a model of a co-scheduling framework, organizing cost-efficient activation of energy supply entities (ESEs) and load demands in a home area power network (HAPN). It integrates roof-top photovoltaic (PV) panels, diesel energy generator (DE), energy storage devices (ESDs), and smart load demands (SLDs) along with grid-supplied power. The scheduling model is based on mixed-integer linear programming (MILP) framework, incorporates a “min-max” optimization algorithm that reduces the daily energy bills, maintains high comfort level for the energy consumers, and increases the self-sufficiency of the home. The proposed strategy exploits the flexibility in dynamic energy price signals and SLDs of various classes, providing day-ahead cost-optimal scheduling decisions for incorporated energy entities. A linearized component-based model is developed, considering inefficiencies, taking various power phase modes of the SLDs along with the cost of operation, maintenance, and degradation of the equipment. A case study based on numerical analysis determines the particular features of the proposed HAPN model. Simulation results demonstrate the real prospect of our implemented strategy, utilizing a cost-effective optimal blend of distinct energy entities in a smart home

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Building and exploiting a Digital Twin for the management of drinking water distribution networks

    Full text link
    [EN] Digital Twins (DTs) are starting to be exploited to improve the management of water distribution systems (WDSs) and, in the future, they will be crucial for decision making. In this paper, the authors propose several requirements that a DT of a water distribution system should accomplish. Developing a DT is a challenge, and a continuous process of adjustments and learning is required. Due to the advantages of having a DT of the WDS always available, during the last years a strategy to build and maintain a DT of the water distribution network of Valencia (Spain) and its Metropolitan Area (1.6 million inhabitants) was developed. This is one of the first DTs built of a water utility, being currently in operation. The great benefits of their use in the daily operation of the system ensure that they will begin to be usual in the most advanced smart cities.Conejos Fuertes, P.; Martínez Alzamora, F.; Hervás-Carot, M.; Alonso Campos, JC. (2020). Building and exploiting a Digital Twin for the management of drinking water distribution networks. Urban Water Journal. 17(8):704-713. https://doi.org/10.1080/1573062X.2020.1771382S704713178Chacón Ramírez, E., Albarrán, J. C., & Cruz Salazar, L. A. (2019). The Control of Water Distribution Systems as a Holonic System. Studies in Computational Intelligence, 352-365. doi:10.1007/978-3-030-27477-1_27Grieves, M., et al. 2015. Virtually Intelligent Product Systems: Digital and Physical Twins. In Complex Systems Engineering: Theory and Practice, edited by S. Flumerfelt, et al., 175–200. American Institute of Aeronautics and Astronautics.Hatchett, S., J. Uber, D. Boccelli, T. Haxton, R. Janke, A. Kramer, A. Matracia, and S. Panguluri. 2011. “Real-Time Distribution System Modeling: Development, Application, and Insights.” Urban Water Management: Challenges and Oppurtunities - 11thInternational Conference on Computing and Control for the Water Industry, CCWI 2011 July.Kartakis, S., Abraham, E., & McCann, J. A. (2015). WaterBox. Proceedings of the 1st ACM International Workshop on Cyber-Physical Systems for Smart Water Networks. doi:10.1145/2738935.2738939Lin, J., Sedigh, S., & Miller, A. (2009). Towards Integrated Simulation of Cyber-Physical Systems: A Case Study on Intelligent Water Distribution. 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing. doi:10.1109/dasc.2009.140Qi, Q., & Tao, F. (2018). Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access, 6, 3585-3593. doi:10.1109/access.2018.2793265Alac, M. (2008). Working with Brain Scans. Social Studies of Science, 38(4), 483-508. doi:10.1177/0306312708089715Shi, Y., Xu, J., & Du, W. (2019). Discussion on the New Operation Management Mode of Hydraulic Engineering Based on the Digital Twin Technique. Journal of Physics: Conference Series, 1168, 022044. doi:10.1088/1742-6596/1168/2/022044Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics, 15(4), 2405-2415. doi:10.1109/tii.2018.2873186Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2017). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9-12), 3563-3576. doi:10.1007/s00170-017-0233-1Tao, F., & Qi, Q. (2019). Make more digital twins. Nature, 573(7775), 490-491. doi:10.1038/d41586-019-02849-1Uber, J., S. Hatchett, S. Hooper, D. Boccelli, H. Woo, and R. Janke. 2014. Water Utility Case Study of Real-Time Network Hydaulic and Water Qualilty Modeling Using EPANET-RTX Libraries. EPA 6007R-14/350 Report. Cincinnati, Ohio: Environmental Protection Agency.Wang, Z., Song, H., Watkins, D. W., Ong, K. G., Xue, P., Yang, Q., & Shi, X. (2015). Cyber-physical systems for water sustainability: challenges and opportunities. IEEE Communications Magazine, 53(5), 216-222. doi:10.1109/mcom.2015.710566

    Adopting Modern Fitness Sensors to Improve Patient Care

    Get PDF
    Technology found in modern fitness sensor devices advances at a very fast pace and current smartwatches are on the verge of closing the gap between being an everyday object and a medically reliable monitoring device. In this thesis, the possibility of adopting fitness sensor devices in medical environments is explored and use cases in which sensor devices can be deployed are examined. Their successful transfer from the area of sports to medical analyses and treatments may help patients to deal with their illnesses and to improve the level of patient care found today. Privacy and security issues as well as social concerns associated with such a disruptive evolution are discussed and practical tests of a pulse oximeter in various activities of daily living are conducted. The collected health data depicts a close representation of the performed activities. Furthermore, three types of fitness sensor devices were used in different real-life scenarios and the resulting data is compared. The results show that the recorded vital signs may differ significantly, depending on the scenario. ii
    • …
    corecore