2,420 research outputs found

    ZK-PCPs from Leakage-Resilient Secret Sharing

    Get PDF
    Zero-Knowledge PCPs (ZK-PCPs; Kilian, Petrank, and Tardos, STOC `97) are PCPs with the additional zero-knowledge guarantee that the view of any (possibly malicious) verifier making a bounded number of queries to the proof can be efficiently simulated up to a small statistical distance. Similarly, ZK-PCPs of Proximity (ZK-PCPPs; Ishai and Weiss, TCC `14) are PCPPs in which the view of an adversarial verifier can be efficiently simulated with few queries to the input. Previous ZK-PCP constructions obtained an exponential gap between the query complexity q of the honest verifier, and the bound q^* on the queries of a malicious verifier (i.e., q = poly log (q^*)), but required either exponential-time simulation, or adaptive honest verification. This should be contrasted with standard PCPs, that can be verified non-adaptively (i.e., with a single round of queries to the proof). The problem of constructing such ZK-PCPs, even when q^* = q, has remained open since they were first introduced more than 2 decades ago. This question is also open for ZK-PCPPs, for which no construction with non-adaptive honest verification is known (not even with exponential-time simulation). We resolve this question by constructing the first ZK-PCPs and ZK-PCPPs which simultaneously achieve efficient zero-knowledge simulation and non-adaptive honest verification. Our schemes have a square-root query gap, namely q^*/q = O(?n) where n is the input length. Our constructions combine the "MPC-in-the-head" technique (Ishai et al., STOC `07) with leakage-resilient secret sharing. Specifically, we use the MPC-in-the-head technique to construct a ZK-PCP variant over a large alphabet, then employ leakage-resilient secret sharing to design a new alphabet reduction for ZK-PCPs which preserves zero-knowledge

    On the Power of Many One-Bit Provers

    Full text link
    We study the class of languages, denoted by \MIP[k, 1-\epsilon, s], which have kk-prover games where each prover just sends a \emph{single} bit, with completeness 1ϵ1-\epsilon and soundness error ss. For the case that k=1k=1 (i.e., for the case of interactive proofs), Goldreich, Vadhan and Wigderson ({\em Computational Complexity'02}) demonstrate that \SZK exactly characterizes languages having 1-bit proof systems with"non-trivial" soundness (i.e., 1/2<s12ϵ1/2 < s \leq 1-2\epsilon). We demonstrate that for the case that k2k\geq 2, 1-bit kk-prover games exhibit a significantly richer structure: + (Folklore) When s12kϵs \leq \frac{1}{2^k} - \epsilon, \MIP[k, 1-\epsilon, s] = \BPP; + When 12k+ϵs<22kϵ\frac{1}{2^k} + \epsilon \leq s < \frac{2}{2^k}-\epsilon, \MIP[k, 1-\epsilon, s] = \SZK; + When s22k+ϵs \ge \frac{2}{2^k} + \epsilon, \AM \subseteq \MIP[k, 1-\epsilon, s]; + For s0.62k/2ks \le 0.62 k/2^k and sufficiently large kk, \MIP[k, 1-\epsilon, s] \subseteq \EXP; + For s2k/2ks \ge 2k/2^{k}, \MIP[k, 1, 1-\epsilon, s] = \NEXP. As such, 1-bit kk-prover games yield a natural "quantitative" approach to relating complexity classes such as \BPP,\SZK,\AM, \EXP, and \NEXP. We leave open the question of whether a more fine-grained hierarchy (between \AM and \NEXP) can be established for the case when s22k+ϵs \geq \frac{2}{2^k} + \epsilon

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs

    On the Impossibility of Probabilistic Proofs in Relativized Worlds

    Get PDF
    We initiate the systematic study of probabilistic proofs in relativized worlds, where the goal is to understand, for a given oracle, the possibility of "non-trivial" proof systems for deterministic or nondeterministic computations that make queries to the oracle. This question is intimately related to a recent line of work that seeks to improve the efficiency of probabilistic proofs for computations that use functionalities such as cryptographic hash functions and digital signatures, by instantiating them via constructions that are "friendly" to known constructions of probabilistic proofs. Informally, negative results about probabilistic proofs in relativized worlds provide evidence that this line of work is inherent and, conversely, positive results provide a way to bypass it. We prove several impossibility results for probabilistic proofs relative to natural oracles. Our results provide strong evidence that tailoring certain natural functionalities to known probabilistic proofs is inherent

    Post-quantum cryptographic hardware primitives

    Full text link
    The development and implementation of post-quantum cryptosystems have become a pressing issue in the design of secure computing systems, as general quantum computers have become more feasible in the last two years. In this work, we introduce a set of hardware post-quantum cryptographic primitives (PCPs) consisting of four frequently used security components, i.e., public-key cryptosystem (PKC), key exchange (KEX), oblivious transfer (OT), and zero-knowledge proof (ZKP). In addition, we design a high speed polynomial multiplier to accelerate these primitives. These primitives will aid researchers and designers in constructing quantum-proof secure computing systems in the post-quantum era.Published versio

    Evaluating diverse electronic consultation programs with a common framework.

    Get PDF
    BackgroundElectronic consultation is an emerging mode of specialty care delivery that allows primary care providers and their patients to obtain specialist expertise without an in-person visit. While studies of individual programs have demonstrated benefits related to timely access to specialty care, electronic consultation programs have not achieved widespread use in the United States. The lack of common evaluation metrics across health systems and concerns related to the generalizability of existing evaluation efforts may be hampering further growth. We sought to identify gaps in knowledge related to the implementation of electronic consultation programs and develop a set of shared evaluation measures to promote further diffusion.MethodsUsing a case study approach, we apply the Reach, Effectiveness, Adoption, Implementation and Maintenance (RE-AIM) and the Quadruple Aim frameworks of evaluation to examine electronic consultation implementation across diverse delivery systems. Data are from 4 early adopter healthcare delivery systems (San Francisco Health Network, Mayo Clinic, Veterans Administration, Champlain Local Health Integration Network) that represent varied organizational structures, care for different patient populations, and have well-established multi-specialty electronic consultation programs. Data sources include published and unpublished quantitative data from each electronic consultation database and qualitative data from systems' end-users.ResultsOrganizational drivers of electronic consultation implementation were similar across the systems (challenges with timely and/or efficient access to specialty care), though unique system-level facilitators and barriers influenced reach, adoption and design. Effectiveness of implementation was consistent, with improved patient access to timely, perceived high-quality specialty expertise with few negative consequences, garnering high satisfaction among end-users. Data about patient-specific clinical outcomes are lacking, as are policies that provide guidance on the legal implications of electronic consultation and ideal remuneration strategies.ConclusionA core set of effectiveness and implementation metrics rooted in the Quadruple Aim may promote data-driven improvements and further diffusion of successful electronic consultation programs
    corecore