8,296 research outputs found

    Fast Computation of Smith Forms of Sparse Matrices Over Local Rings

    Full text link
    We present algorithms to compute the Smith Normal Form of matrices over two families of local rings. The algorithms use the \emph{black-box} model which is suitable for sparse and structured matrices. The algorithms depend on a number of tools, such as matrix rank computation over finite fields, for which the best-known time- and memory-efficient algorithms are probabilistic. For an \nxn matrix AA over the ring \Fzfe, where fef^e is a power of an irreducible polynomial f \in \Fz of degree dd, our algorithm requires \bigO(\eta de^2n) operations in \F, where our black-box is assumed to require \bigO(\eta) operations in \F to compute a matrix-vector product by a vector over \Fzfe (and η\eta is assumed greater than \Pden). The algorithm only requires additional storage for \bigO(\Pden) elements of \F. In particular, if \eta=\softO(\Pden), then our algorithm requires only \softO(n^2d^2e^3) operations in \F, which is an improvement on known dense methods for small dd and ee. For the ring \ZZ/p^e\ZZ, where pp is a prime, we give an algorithm which is time- and memory-efficient when the number of nontrivial invariant factors is small. We describe a method for dimension reduction while preserving the invariant factors. The time complexity is essentially linear in μnrelogp,\mu n r e \log p, where μ\mu is the number of operations in \ZZ/p\ZZ to evaluate the black-box (assumed greater than nn) and rr is the total number of non-zero invariant factors. To avoid the practical cost of conditioning, we give a Monte Carlo certificate, which at low cost, provides either a high probability of success or a proof of failure. The quest for a time- and memory-efficient solution without restrictions on the number of nontrivial invariant factors remains open. We offer a conjecture which may contribute toward that end.Comment: Preliminary version to appear at ISSAC 201

    Efficient Computation of the Characteristic Polynomial

    Full text link
    This article deals with the computation of the characteristic polynomial of dense matrices over small finite fields and over the integers. We first present two algorithms for the finite fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization of Keller-Gehrig's third algorithm could improve both complexity and computational time. We use these results as a basis for the computation of the characteristic polynomial of integer matrices. We first use early termination and Chinese remaindering for dense matrices. Then a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is particularly well suited to sparse and/or structured matrices

    Towards an exact adaptive algorithm for the determinant of a rational matrix

    Full text link
    In this paper we propose several strategies for the exact computation of the determinant of a rational matrix. First, we use the Chinese Remaindering Theorem and the rational reconstruction to recover the rational determinant from its modular images. Then we show a preconditioning for the determinant which allows us to skip the rational reconstruction process and reconstruct an integer result. We compare those approaches with matrix preconditioning which allow us to treat integer instead of rational matrices. This allows us to introduce integer determinant algorithms to the rational determinant problem. In particular, we discuss the applicability of the adaptive determinant algorithm of [9] and compare it with the integer Chinese Remaindering scheme. We present an analysis of the complexity of the strategies and evaluate their experimental performance on numerous examples. This experience allows us to develop an adaptive strategy which would choose the best solution at the run time, depending on matrix properties. All strategies have been implemented in LinBox linear algebra library

    Generic design of Chinese remaindering schemes

    Get PDF
    We propose a generic design for Chinese remainder algorithms. A Chinese remainder computation consists in reconstructing an integer value from its residues modulo non coprime integers. We also propose an efficient linear data structure, a radix ladder, for the intermediate storage and computations. Our design is structured into three main modules: a black box residue computation in charge of computing each residue; a Chinese remaindering controller in charge of launching the computation and of the termination decision; an integer builder in charge of the reconstruction computation. We then show that this design enables many different forms of Chinese remaindering (e.g. deterministic, early terminated, distributed, etc.), easy comparisons between these forms and e.g. user-transparent parallelism at different parallel grains

    An introspective algorithm for the integer determinant

    Full text link
    We present an algorithm computing the determinant of an integer matrix A. The algorithm is introspective in the sense that it uses several distinct algorithms that run in a concurrent manner. During the course of the algorithm partial results coming from distinct methods can be combined. Then, depending on the current running time of each method, the algorithm can emphasize a particular variant. With the use of very fast modular routines for linear algebra, our implementation is an order of magnitude faster than other existing implementations. Moreover, we prove that the expected complexity of our algorithm is only O(n^3 log^{2.5}(n ||A||)) bit operations in the dense case and O(Omega n^{1.5} log^2(n ||A||) + n^{2.5}log^3(n||A||)) in the sparse case, where ||A|| is the largest entry in absolute value of the matrix and Omega is the cost of matrix-vector multiplication in the case of a sparse matrix.Comment: Published in Transgressive Computing 2006, Grenade : Espagne (2006
    corecore