9,658 research outputs found

    On the Number of Edges of Fan-Crossing Free Graphs

    Full text link
    A graph drawn in the plane with n vertices is k-fan-crossing free for k > 1 if there are no k+1 edges g,e1,...ekg,e_1,...e_k, such that e1,e2,...eke_1,e_2,...e_k have a common endpoint and gg crosses all eie_i. We prove a tight bound of 4n-8 on the maximum number of edges of a 2-fan-crossing free graph, and a tight 4n-9 bound for a straight-edge drawing. For k > 2, we prove an upper bound of 3(k-1)(n-2) edges. We also discuss generalizations to monotone graph properties

    Applications of a new separator theorem for string graphs

    Get PDF
    An intersection graph of curves in the plane is called a string graph. Matousek almost completely settled a conjecture of the authors by showing that every string graph of m edges admits a vertex separator of size O(\sqrt{m}\log m). In the present note, this bound is combined with a result of the authors, according to which every dense string graph contains a large complete balanced bipartite graph. Three applications are given concerning string graphs G with n vertices: (i) if K_t is not a subgraph of G for some t, then the chromatic number of G is at most (\log n)^{O(\log t)}; (ii) if K_{t,t} is not a subgraph of G, then G has at most t(\log t)^{O(1)}n edges,; and (iii) a lopsided Ramsey-type result, which shows that the Erdos-Hajnal conjecture almost holds for string graphs.Comment: 7 page

    Disjoint edges in topological graphs and the tangled-thrackle conjecture

    Full text link
    It is shown that for a constant t∈Nt\in \mathbb{N}, every simple topological graph on nn vertices has O(n)O(n) edges if it has no two sets of tt edges such that every edge in one set is disjoint from all edges of the other set (i.e., the complement of the intersection graph of the edges is Kt,tK_{t,t}-free). As an application, we settle the \emph{tangled-thrackle} conjecture formulated by Pach, Radoi\v{c}i\'c, and T\'oth: Every nn-vertex graph drawn in the plane such that every pair of edges have precisely one point in common, where this point is either a common endpoint, a crossing, or a point of tangency, has at most O(n)O(n) edges

    Edge Partitions of Optimal 22-plane and 33-plane Graphs

    Full text link
    A topological graph is a graph drawn in the plane. A topological graph is kk-plane, k>0k>0, if each edge is crossed at most kk times. We study the problem of partitioning the edges of a kk-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1k=1, we focus on optimal 22-plane and 33-plane graphs, which are 22-plane and 33-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a forest, while (ii) an edge partition formed by a 11-plane graph and two plane forests always exists and can be computed in linear time. (iii) We describe efficient algorithms to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a plane graph with maximum vertex degree 1212, or with maximum vertex degree 88 if the optimal 22-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) We exhibit an infinite family of simple optimal 22-plane graphs such that in any edge partition composed of a 11-plane graph and a plane graph, the plane graph has maximum vertex degree at least 66 and the 11-plane graph has maximum vertex degree at least 1212. (v) We show that every optimal 33-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 22-plane graph and two plane forests
    • …
    corecore