82,539 research outputs found

    Dynamical Origin of Extrasolar Planet Eccentricity Distribution

    Full text link
    We explore the possibility that the observed eccentricity distribution of extrasolar planets arose through planet-planet interactions, after the initial stage of planet formation was complete. Our results are based on ~3250 numerical integrations of ensembles of randomly constructed planetary systems, each lasting 100 Myr. We find that for a remarkably wide range of initial conditions the eccentricity distributions of dynamically active planetary systems relax towards a common final equilibrium distribution, well described by the fitting formula dn ~ e exp[-1/2 (e/0.3)^2] de. This distribution agrees well with the observed eccentricity distribution for e > 0.2, but predicts too few planets at lower eccentricities, even when we exclude planets subject to tidal circularization. These findings suggest that a period of large-scale dynamical instability has occurred in a significant fraction of newly formed planetary systems, lasting 1--2 orders of magnitude longer than the ~1 Myr interval in which gas-giant planets are assembled. This mechanism predicts no (or weak) correlations between semimajor axis, eccentricity, inclination, and mass in dynamically relaxed planetary systems. An additional observational consequence of dynamical relaxation is a significant population of planets (>10%) that are highly inclined (>25deg) with respect to the initial symmetry plane of the protoplanetary disk; this population may be detectable in transiting planets through the Rossiter-McLaughlin effect.Comment: Accepted to ApJ, conclusions updated to reflect the current observational constraint

    A Family of Iterative Gauss-Newton Shooting Methods for Nonlinear Optimal Control

    Full text link
    This paper introduces a family of iterative algorithms for unconstrained nonlinear optimal control. We generalize the well-known iLQR algorithm to different multiple-shooting variants, combining advantages like straight-forward initialization and a closed-loop forward integration. All algorithms have similar computational complexity, i.e. linear complexity in the time horizon, and can be derived in the same computational framework. We compare the full-step variants of our algorithms and present several simulation examples, including a high-dimensional underactuated robot subject to contact switches. Simulation results show that our multiple-shooting algorithms can achieve faster convergence, better local contraction rates and much shorter runtimes than classical iLQR, which makes them a superior choice for nonlinear model predictive control applications.Comment: 8 page

    Royal Road to Coupling Classical and Quantum Dynamics

    Get PDF
    We present a consistent framework of coupled classical and quantum dynamics. Our result allows us to overcome severe limitations of previous phenomenological approaches, like evolutions that do not preserve the positivity of quantum states or that allow to activate quantum nonlocality for superluminal signaling. A `hybrid' quantum-classical density is introduced and its evolution equation derived. The implications and applications of our result are numerous: it incorporates the back-reaction of quantum on classical variables, it resolves fundamental problems encountered in standard mean field theories, and remarkably, also the quantum measurement process, i.e. the most controversial example of quantum-classical interaction is consistently described within our approach, leading to a theory of dynamical collapse.Comment: 4 pages, RevTe

    Using field theory to construct hybrid particle-continuum simulation schemes with adaptive resolution for soft matter systems

    Full text link
    We develop a multiscale hybrid scheme for simulations of soft condensed matter systems, which allows one to treat the system at the particle level in selected regions of space, and at the continuum level elsewhere. It is derived systematically from an underlying particle-based model by field theoretic methods. Particles in different representation regions can switch representations on the fly, controlled by a spatially varying tuning function. As a test case, the hybrid scheme is applied to simulate colloid-polymer composites with high resolution regions close to the colloids. The hybrid simulations are significantly faster than reference simulations of a pure particle-based model, and the results are in good agreement.Comment: 8 pages, 3 figure

    A family of droids -- Android malware detection via behavioral modeling: static vs dynamic analysis

    Full text link
    Following the increasing popularity of mobile ecosystems, cybercriminals have increasingly targeted them, designing and distributing malicious apps that steal information or cause harm to the device's owner. Aiming to counter them, detection techniques based on either static or dynamic analysis that model Android malware, have been proposed. While the pros and cons of these analysis techniques are known, they are usually compared in the context of their limitations e.g., static analysis is not able to capture runtime behaviors, full code coverage is usually not achieved during dynamic analysis, etc. Whereas, in this paper, we analyze the performance of static and dynamic analysis methods in the detection of Android malware and attempt to compare them in terms of their detection performance, using the same modeling approach. To this end, we build on MaMaDroid, a state-of-the-art detection system that relies on static analysis to create a behavioral model from the sequences of abstracted API calls. Then, aiming to apply the same technique in a dynamic analysis setting, we modify CHIMP, a platform recently proposed to crowdsource human inputs for app testing, in order to extract API calls' sequences from the traces produced while executing the app on a CHIMP virtual device. We call this system AuntieDroid and instantiate it by using both automated (Monkey) and user-generated inputs. We find that combining both static and dynamic analysis yields the best performance, with F-measure reaching 0.92. We also show that static analysis is at least as effective as dynamic analysis, depending on how apps are stimulated during execution, and, finally, investigate the reasons for inconsistent misclassifications across methods.Accepted manuscrip

    On the formation of neon-enriched donor stars in ultracompact X-ray binaries

    Get PDF
    We study the formation of neon-enriched donor stars in ultracompact X-ray binaries (orbital periods P<80 min) and show that their progenitors have to be low-mass (0.3 - 0.4 solar mass) ``hybrid'' white dwarfs (with CO cores and thick helium mantles). Stable mass transfer is possible if in the initial stages of mass exchange mass is lost from the system, taking away the specific orbital angular momentum of the accretor (``isotropic re-emission''). The excess of neon in the transferred matter is due to chemical fractionation of the white dwarf which has to occur prior to the Roche lobe overflow by the donor. The estimated lower limit of the orbital periods of the systems with neon-enriched donors is close to 10 min. We show that the X-ray pulsar 4U 1626-67, which likely also has a neon-enriched companion, may have been formed via accretion induced collapse of an oxygen-neon white dwarf accretor if the donor was a hybrid white dwarf.Comment: 6 pages, 3 figures, uses aa.cls 5.1 version class file, accepted for publication in Astronomy and Astrophysic
    • …
    corecore