879 research outputs found

    Schnyder decompositions for regular plane graphs and application to drawing

    Full text link
    Schnyder woods are decompositions of simple triangulations into three edge-disjoint spanning trees crossing each other in a specific way. In this article, we define a generalization of Schnyder woods to dd-angulations (plane graphs with faces of degree dd) for all d≥3d\geq 3. A \emph{Schnyder decomposition} is a set of dd spanning forests crossing each other in a specific way, and such that each internal edge is part of exactly d−2d-2 of the spanning forests. We show that a Schnyder decomposition exists if and only if the girth of the dd-angulation is dd. As in the case of Schnyder woods (d=3d=3), there are alternative formulations in terms of orientations ("fractional" orientations when d≥5d\geq 5) and in terms of corner-labellings. Moreover, the set of Schnyder decompositions on a fixed dd-angulation of girth dd is a distributive lattice. We also show that the structures dual to Schnyder decompositions (on dd-regular plane graphs of mincut dd rooted at a vertex v∗v^*) are decompositions into dd spanning trees rooted at v∗v^* such that each edge not incident to v∗v^* is used in opposite directions by two trees. Additionally, for even values of dd, we show that a subclass of Schnyder decompositions, which are called even, enjoy additional properties that yield a reduced formulation; in the case d=4, these correspond to well-studied structures on simple quadrangulations (2-orientations and partitions into 2 spanning trees). In the case d=4, the dual of even Schnyder decompositions yields (planar) orthogonal and straight-line drawing algorithms. For a 4-regular plane graph GG of mincut 4 with nn vertices plus a marked vertex vv, the vertices of G\vG\backslash v are placed on a (n−1)×(n−1)(n-1) \times (n-1) grid according to a permutation pattern, and in the orthogonal drawing each of the 2n−22n-2 edges of G\vG\backslash v has exactly one bend. Embedding also the marked vertex vv is doable at the cost of two additional rows and columns and 8 additional bends for the 4 edges incident to vv. We propose a further compaction step for the drawing algorithm and show that the obtained grid-size is strongly concentrated around 25n/32×25n/3225n/32\times 25n/32 for a uniformly random instance with nn vertices

    Partitioning Graph Drawings and Triangulated Simple Polygons into Greedily Routable Regions

    Get PDF
    A greedily routable region (GRR) is a closed subset of R2\mathbb R^2, in which each destination point can be reached from each starting point by choosing the direction with maximum reduction of the distance to the destination in each point of the path. Recently, Tan and Kermarrec proposed a geographic routing protocol for dense wireless sensor networks based on decomposing the network area into a small number of interior-disjoint GRRs. They showed that minimum decomposition is NP-hard for polygons with holes. We consider minimum GRR decomposition for plane straight-line drawings of graphs. Here, GRRs coincide with self-approaching drawings of trees, a drawing style which has become a popular research topic in graph drawing. We show that minimum decomposition is still NP-hard for graphs with cycles, but can be solved optimally for trees in polynomial time. Additionally, we give a 2-approximation for simple polygons, if a given triangulation has to be respected.Comment: full version of a paper appearing in ISAAC 201

    The role of twins in computing planar supports of hypergraphs

    Full text link
    A support or realization of a hypergraph HH is a graph GG on the same vertex as HH such that for each hyperedge of HH it holds that its vertices induce a connected subgraph of GG. The NP-hard problem of finding a planar} support has applications in hypergraph drawing and network design. Previous algorithms for the problem assume that twins}---pairs of vertices that are in precisely the same hyperedges---can safely be removed from the input hypergraph. We prove that this assumption is generally wrong, yet that the number of twins necessary for a hypergraph to have a planar support only depends on its number of hyperedges. We give an explicit upper bound on the number of twins necessary for a hypergraph with mm hyperedges to have an rr-outerplanar support, which depends only on rr and mm. Since all additional twins can be safely removed, we obtain a linear-time algorithm for computing rr-outerplanar supports for hypergraphs with mm hyperedges if mm and rr are constant; in other words, the problem is fixed-parameter linear-time solvable with respect to the parameters mm and rr

    On contractible edges in convex decompositions

    Full text link
    Let Π\Pi be a convex decomposition of a set PP of n≥3n\geq 3 points in general position in the plane. If Π\Pi consists of more than one polygon, then either Π\Pi contains a deletable edge or Π\Pi contains a contractible edge

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer
    • …
    corecore