110 research outputs found

    New characterization of two-state normal distribution

    Full text link
    In this article we give a purely noncommutative criterion for the characterization of two-state normal distribution. We prove that families of two-state normal distribution can be described by relations which is similar to the conditional expectation in free probability, but has no classical analogue. We also show a generalization of Bozejko, Leinert and Speicher's formula (relating moments and noncommutative cumulants).Comment: 19 pages, 2 figures, accepted for publication by Infinite Dimensional Analysis, Quantum Probability and Related Topic

    Appell polynomials and their relatives II. Boolean theory

    Full text link
    The Appell-type polynomial family corresponding to the simplest non-commutative derivative operator turns out to be connected with the Boolean probability theory, the simplest of the three universal non-commutative probability theories (the other two being free and tensor/classical probability). The basic properties of the Boolean Appell polynomials are described. In particular, their generating function turns out to have a resolvent-type form, just like the generating function for the free Sheffer polynomials. It follows that the Meixner (that is, Sheffer plus orthogonal) polynomial classes, in the Boolean and free theory, coincide. This is true even in the multivariate case. A number of applications of this fact are described, to the Belinschi-Nica and Bercovici-Pata maps, conditional freeness, and the Laha-Lukacs type characterization. A number of properties which hold for the Meixner class in the free and classical cases turn out to hold in general in the Boolean theory. Examples include the behavior of the Jacobi coefficients under convolution, the relationship between the Jacobi coefficients and cumulants, and an operator model for cumulants. Along the way, we obtain a multivariate version of the Stieltjes continued fraction expansion for the moment generating function of an arbitrary state with monic orthogonal polynomials

    Radial Bargmann representation for the Fock space of type B

    Get PDF
    Let να,q\nu_{\alpha,q} be the probability and orthogonality measure for the qq-Meixner-Pollaczek orthogonal polynomials, which has appeared in \cite{BEH15} as the distribution of the (α,q)(\alpha,q)-Gaussian process (the Gaussian process of type B) over the (α,q)(\alpha,q)-Fock space (the Fock space of type B). The main purpose of this paper is to find the radial Bargmann representation of να,q\nu_{\alpha,q}. Our main results cover not only the representation of qq-Gaussian distribution by \cite{LM95}, but also of q2q^2-Gaussian and symmetric free Meixner distributions on R\mathbb R. In addition, non-trivial commutation relations satisfied by (α,q)(\alpha,q)-operators are presented.Comment: 13 pages, minor changes have been mad

    Semigroups of distributions with linear Jacobi parameters

    Full text link
    We show that a convolution semigroup of measures has Jacobi parameters polynomial in the convolution parameter tt if and only if the measures come from the Meixner class. Moreover, we prove the parallel result, in a more explicit way, for the free convolution and the free Meixner class. We then construct the class of measures satisfying the same property for the two-state free convolution. This class of two-state free convolution semigroups has not been considered explicitly before. We show that it also has Meixner-type properties. Specifically, it contains the analogs of the normal, Poisson, and binomial distributions, has a Laha-Lukacs-type characterization, and is related to the q=0q=0 case of quadratic harnesses.Comment: v3: the article is merged back together with arXiv:1003.4025. A significant revision following suggestions by the referee. 2 pdf figure
    corecore