262 research outputs found

    Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form

    Get PDF
    In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algoritms for this type of model are ineffective, but that this problem can be removed by reparameterising the model. We illustrate our results on an example from financial economics and one from the nonparametric regression literature. We also develop an effective particle filter for this model which is useful to assess the fit of the model.Markov chain Monte Carlo, particle filter, cubic spline, state space form, stochastic volatility.

    Generalized Extreme Value Distribution with Time-Dependence Using the AR and MA Models in State Space Form

    Get PDF
    A new state space approach is proposed to model the time- dependence in an extreme value process. The generalized extreme value distribution is extended to incorporate the time-dependence using a state space representation where the state variables either follow an autoregressive (AR) process or a moving average (MA) process with innovations arising from a Gumbel distribution. Using a Bayesian approach, an efficient algorithm is proposed to implement Markov chain Monte Carlo method where we exploit a very accurate approximation of the Gumbel distribution by a ten-component mixture of normal distributions. The methodology is illustrated using extreme returns of daily stock data. The model is fitted to a monthly series of minimum returns and the empirical results support strong evidence for time-dependence among the observed minimum returns.Extreme values, Generalized extreme value distribution, Markov chain Monte Carlo, Mixture sampler, State space model, Stock returns

    Sequential Bayesian inference for implicit hidden Markov models and current limitations

    Full text link
    Hidden Markov models can describe time series arising in various fields of science, by treating the data as noisy measurements of an arbitrarily complex Markov process. Sequential Monte Carlo (SMC) methods have become standard tools to estimate the hidden Markov process given the observations and a fixed parameter value. We review some of the recent developments allowing the inclusion of parameter uncertainty as well as model uncertainty. The shortcomings of the currently available methodology are emphasised from an algorithmic complexity perspective. The statistical objects of interest for time series analysis are illustrated on a toy "Lotka-Volterra" model used in population ecology. Some open challenges are discussed regarding the scalability of the reviewed methodology to longer time series, higher-dimensional state spaces and more flexible models.Comment: Review article written for ESAIM: proceedings and surveys. 25 pages, 10 figure

    A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting

    Full text link
    This paper explores and develops alternative statistical representations and estimation approaches for dynamic mortality models. The framework we adopt is to reinterpret popular mortality models such as the Lee-Carter class of models in a general state-space modelling methodology, which allows modelling, estimation and forecasting of mortality under a unified framework. Furthermore, we propose an alternative class of model identification constraints which is more suited to statistical inference in filtering and parameter estimation settings based on maximization of the marginalized likelihood or in Bayesian inference. We then develop a novel class of Bayesian state-space models which incorporate apriori beliefs about the mortality model characteristics as well as for more flexible and appropriate assumptions relating to heteroscedasticity that present in observed mortality data. We show that multiple period and cohort effect can be cast under a state-space structure. To study long term mortality dynamics, we introduce stochastic volatility to the period effect. The estimation of the resulting stochastic volatility model of mortality is performed using a recent class of Monte Carlo procedure specifically designed for state and parameter estimation in Bayesian state-space models, known as the class of particle Markov chain Monte Carlo methods. We illustrate the framework we have developed using Danish male mortality data, and show that incorporating heteroscedasticity and stochastic volatility markedly improves model fit despite an increase of model complexity. Forecasting properties of the enhanced models are examined with long term and short term calibration periods on the reconstruction of life tables.Comment: 46 page

    Stochastic Volatility Model with Leverage and Asymmetrically Heavy-tailed Error Using GH Skew Student's t-distribution

    Get PDF
    Bayesian analysis of a stochastic volatility model with a generalized hyperbolic (GH) skew Student's t-error distribution is described where we first consider an asymmetric heavy-tailness as well as leverage effects. An efficient Markov chain Monte Carlo estimation method is described exploiting a normal variance-mean mixture representation of the error distribution with an inverse gamma distribution as a mixing distribution. The proposed method is illustrated using simulated data, daily TOPIX and S&P500 stock returns. The model comparison for stock returns is conducted based on the marginal likelihood in the empirical study. The strong evidence of the leverage and asymmetric heavy-tailness is found in the stock returns. Further, the prior sensitivity analysis is conducted to investigate whether obtained results are robust with respect to the choice of the priors.generalized hyperbolic skew Student's t-distribution, Markov chain Monte Carlo, Mixing distribution, State space model, Stochastic volatility, Stock returns
    • ā€¦
    corecore