36 research outputs found

    Methods and Tools for Battery-free Wireless Networks

    Get PDF
    Embedding small wireless sensors into the environment allows for monitoring physical processes with high spatio-temporal resolutions. Today, these devices are equipped with a battery to supply them with power. Despite technological advances, the high maintenance cost and environmental impact of batteries prevent the widespread adoption of wireless sensors. Battery-free devices that store energy harvested from light, vibrations, and other ambient sources in a capacitor promise to overcome the drawbacks of (rechargeable) batteries, such as bulkiness, wear-out and toxicity. Because of low energy input and low storage capacity, battery-free devices operate intermittently; they are forced to remain inactive for most of the time charging their capacitor before being able to operate for a short time. While it is known how to deal with intermittency on a single device, the coordination and communication among groups of multiple battery-free devices remain largely unexplored. For the first time, the present thesis addresses this problem by proposing new methods and tools to investigate and overcome several fundamental challenges

    Towards battery-free machine learning and inference in underwater environments

    Get PDF
    This paper is motivated by a simple question: Can we design and build battery-free devices capable of machine learning and inference in underwater environments? An affirmative answer to this question would have significant implications for a new generation of underwater sensing and monitoring applications for environmental monitoring, scientific exploration, and climate/weather prediction. To answer this question, we explore the feasibility of bridging advances from the past decade in two fields: battery-free networking and low-power machine learning. Our exploration demonstrates that it is indeed possible to enable battery-free inference in underwater environments. We designed a device that can harvest energy from underwater sound, power up an ultra-low-power microcontroller and on-board sensor, perform local inference on sensed measurements using a lightweight Deep Neural Network, and communicate the inference result via backscatter to a receiver. We tested our prototype in an emulated marine bioacoustics application, demonstrating the potential to recognize underwater animal sounds without batteries. Through this exploration, we highlight the challenges and opportunities for making underwater battery-free inference and machine learning ubiquitous

    Enabling Deep Intelligence on Embedded Systems

    Get PDF
    As deep learning for resource-constrained systems become more popular, we see an increased number of intelligent embedded systems such as IoT devices, robots, autonomous vehicles, and the plethora of portable, wearable, and mobile devices that are feature-packed with a wide variety of machine learning tasks. However, the performance of DNNs (deep neural networks) running on an embedded system is significantly limited by the platform's CPU, memory, and battery-size; and their scope is limited to simplistic inference tasks only. This dissertation proposes on-device deep learning algorithms and supporting hardware designs, enabling embedded systems to efficiently perform deep intelligent tasks (i.e., deep neural networks) that are high-memory-footprint, compute-intensive, and energy-hungry beyond their limited computing resources. We name such on-device deep intelligence on embedded systems as Embedded Deep Intelligence. Specifically, we introduce resource-aware learning strategies devised to overcome the four fundamental constraints of embedded systems imposed on the way towards Embedded Deep Intelligence, i.e., in-memory multitask learning via introducing the concept of Neural Weight Virtualization, adaptive real-time learning via introducing the concept of SubFlow, opportunistic accelerated learning via introducing the concept of Neuro.ZERO, and energy-aware intermittent learning, which tackles the problems of the small size of memory, dynamic timing constraint, low-computing capability, and limited energy, respectively. Once deployed in the field with the proposed resource-aware learning strategies, embedded systems are not only able to perform deep inference tasks on sensor data but also update and re-train their learning models at run-time without requiring any help from any external system. Such an on-device learning capability of Embedded Deep Intelligence makes an embedded intelligent system real-time, privacy-aware, secure, autonomous, untethered, responsive, and adaptive without concern for its limited resources.Doctor of Philosoph

    Wireless Technologies for Implantable Devices

    Get PDF
    Wireless technologies are incorporated in implantable devices since at least the 1950s. With remote data collection and control of implantable devices, these wireless technologies help researchers and clinicians to better understand diseases and to improve medical treatments. Today, wireless technologies are still more commonly used for research, with limited applications in a number of clinical implantable devices. Recent development and standardization of wireless technologies present a good opportunity for their wider use in other types of implantable devices, which will significantly improve the outcomes of many diseases or injuries. This review briefly describes some common wireless technologies and modern advancements, as well as their strengths and suitability for use in implantable medical devices. The applications of these wireless technologies in treatments of orthopedic and cardiovascular injuries and disorders are described. This review then concludes with a discussion on the technical challenges and potential solutions of implementing wireless technologies in implantable devices

    SCALING UP TASK EXECUTION ON RESOURCE-CONSTRAINED SYSTEMS

    Get PDF
    The ubiquity of executing machine learning tasks on embedded systems with constrained resources has made efficient execution of neural networks on these systems under the CPU, memory, and energy constraints increasingly important. Different from high-end computing systems where resources are abundant and reliable, resource-constrained systems only have limited computational capability, limited memory, and limited energy supply. This dissertation focuses on how to take full advantage of the limited resources of these systems in order to improve task execution efficiency from different aspects of the execution pipeline. While the existing literature primarily aims at solving the problem by shrinking the model size according to the resource constraints, this dissertation aims to improve the execution efficiency for a given set of tasks from the following two aspects. Firstly, we propose SmartON, which is the first batteryless active event detection system that considers both the event arrival pattern as well as the harvested energy to determine when the system should wake up and what the duty cycle should be. Secondly, we propose Antler, which exploits the affinity between all pairs of tasks in a multitask inference system to construct a compact graph representation of the task set for a given overall size budget. To achieve the aforementioned algorithmic proposals, we propose the following hardware solutions. One is a controllable capacitor array that can expand the system’s energy storage on-the-fly. The other is a FRAM array that can accommodate multiple neural networks running on one system.Doctor of Philosoph

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    When backscatter communication meets vehicular networks: boosting crosswalk awareness

    Get PDF
    The research of safety applications in vehicular networks has been a popular research topic in an effort to reduce the number of road victims. Advances on vehicular communications are facilitating information sharing through real time communications, critical for the development of driving assistance systems. However, the communication by itself is not enough to reach the most desired target as we need to know which safety-related information should be disseminated. In this work, we bring passive sensors and backscatter communication to the vehicular network world. The idea is to increase the driver (or vehicle) awareness regarding the presence of pedestrians in a crosswalk. Passive sensors and backscatter communication technologies are used for the pedestrians’ detection phase, while the vehicular network is used during the dissemination of the detection information to surrounding vehicles. The proposed solution was validated through end-to-end experimentation, with real hardware and in a real crosswalk with real pedestrians and vehicles, demonstrating its applicability.info:eu-repo/semantics/publishedVersio
    corecore