8,885 research outputs found

    Combinatorial and Algorithmic Aspects of Monadic Stability

    Get PDF
    Nowhere dense classes of graphs are classes of sparse graphs with rich structural and algorithmic properties, however, they fail to capture even simple classes of dense graphs. Monadically stable classes, originating from model theory, generalize nowhere dense classes and close them under transductions, i.e. transformations defined by colorings and simple first-order interpretations. In this work we aim to extend some combinatorial and algorithmic properties of nowhere dense classes to monadically stable classes of finite graphs. We prove the following results. - For every monadically stable class C and fixed integer s ? 3, the Ramsey numbers R_C(s,t) are bounded from above by ?(t^{s-1-?}) for some ? > 0, improving the bound R(s,t) ? ?(t^{s-1}/(log t)^{s-1}) known for the class of all graphs and the bounds known for k-stable graphs when s ? k. - For every monadically stable class C and every integer r, there exists ? > 0 such that every graph G ? C that contains an r-subdivision of the biclique K_{t,t} as a subgraph also contains K_{t^?,t^?} as a subgraph. This generalizes earlier results for nowhere dense graph classes. - We obtain a stronger regularity lemma for monadically stable classes of graphs. - Finally, we show that we can compute polynomial kernels for the independent set and dominating set problems in powers of nowhere dense classes. Formerly, only fixed-parameter tractable algorithms were known for these problems on powers of nowhere dense classes

    On the Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    One of Courcelle's celebrated results states that if C is a class of graphs of bounded tree-width, then model-checking for monadic second order logic (MSO_2) is fixed-parameter tractable (fpt) on C by linear time parameterized algorithms, where the parameter is the tree-width plus the size of the formula. An immediate question is whether this is best possible or whether the result can be extended to classes of unbounded tree-width. In this paper we show that in terms of tree-width, the theorem cannot be extended much further. More specifically, we show that if C is a class of graphs which is closed under colourings and satisfies certain constructibility conditions and is such that the tree-width of C is not bounded by \log^{84} n then MSO_2-model checking is not fpt unless SAT can be solved in sub-exponential time. If the tree-width of C is not poly-logarithmically bounded, then MSO_2-model checking is not fpt unless all problems in the polynomial-time hierarchy can be solved in sub-exponential time

    Krein parameters and antipodal tight graphs with diameter 3 and 4

    Get PDF
    AbstractWe determine which Krein parameters of nonbipartite antipodal distance-regular graphs of diameter 3 and 4 can vanish, and give combinatorial interpretations of their vanishing. We also study tight distance-regular graphs of diameter 3 and 4. In the case of diameter 3, tight graphs are precisely the Taylor graphs. In the case of antipodal distance-regular graphs of diameter 4, tight graphs are precisely the graphs for which the Krein parameter q114 vanishes
    • …
    corecore