12,624 research outputs found

    Improving PSF modelling for weak gravitational lensing using new methods in model selection

    Full text link
    A simple theoretical framework for the description and interpretation of spatially correlated modelling residuals is presented, and the resulting tools are found to provide a useful aid to model selection in the context of weak gravitational lensing. The description is focused upon the specific problem of modelling the spatial variation of a telescope point spread function (PSF) across the instrument field of view, a crucial stage in lensing data analysis, but the technique may be used to rank competing models wherever data are described empirically. As such it may, with further development, provide useful extra information when used in combination with existing model selection techniques such as the Akaike and Bayesian Information Criteria, or the Bayesian evidence. Two independent diagnostic correlation functions are described and the interpretation of these functions demonstrated using a simulated PSF anisotropy field. The efficacy of these diagnostic functions as an aid to the correct choice of empirical model is then demonstrated by analyzing results for a suite of Monte Carlo simulations of random PSF fields with varying degrees of spatial structure, and it is shown how the diagnostic functions can be related to requirements for precision cosmic shear measurement. The limitations of the technique, and opportunities for improvements and applications to fields other than weak gravitational lensing, are discussed.Comment: 18 pages, 12 figures. Modified to match version accepted for publication in MNRA

    Cumulative measures of information and stochastic orders

    Get PDF
    In this paper we present some known results on cumulative measures of information, study their properties and relate these definitions to concepts of reliability theory. We give some relations of these measures of discrimination with some well-known stochastic orders and with the relative reversed hazard rate order. We investigate also a stochastic comparison among the empirical cumulative measures that can be related to the cumulative measures. Large part of this paper is a survey article; however, in the last section, we define a new measure of discrimination between residual lifetimes and study some of its properties

    Sex Differences in Spatial Accuracy Relate to the Neural Activation of Antagonistic Muscles in Young Adults

    Get PDF
    Sex is an important physiological variable of behavior, but its effect on motor control remains poorly understood. Some evidence suggests that women exhibit greater variability during constant contractions and poorer accuracy during goal-directed tasks. However, it remains unclear whether motor output variability or altered muscle activation impairs accuracy in women. Here, we examine sex differences in endpoint accuracy during ankle goal-directed movements and the activity of the antagonistic muscles. Ten women (23.1 ± 5.1 years) and 10 men (23 ± 3.7 years) aimed to match a target (9° in 180 ms) with ankle dorsiflexion. Participants performed 50 trials and we recorded the endpoint accuracy and the electromyographic (EMG) activity of the primary agonist (Tibialis Anterior; TA) and antagonist (Soleus; SOL) muscles. Women exhibited greater spatial inaccuracy (Position error: t = −2.65, P = 0.016) but not temporal inaccuracy relative to men. The motor output variability was similar for the two sexes (P \u3e 0.2). The spatial inaccuracy in women was related to greater variability in the coordination of the antagonistic muscles (R 2 0.19, P = 0.03). These findings suggest that women are spatially less accurate than men during fast goal-directed movements likely due to an altered activation of the antagonistic muscles
    • 

    corecore